Open Access
Issue |
Manufacturing Rev.
Volume 9, 2022
|
|
---|---|---|
Article Number | 29 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/mfreview/2022027 | |
Published online | 03 October 2022 |
- R.P. Kolli, A. Devaraj, A review of metastable beta titanium alloys, Metals 8 (2018) 506 [CrossRef] [Google Scholar]
- ATI, Technical Data, Technical Data Sheet ATI Ti-6Al-4V, Grade 5 (2012), pp. 4–7, www.ATImetals.com [Google Scholar]
- C. Cui, B. Hu, L. Zhao, S. Liu, Titanium alloy production technology, market prospects and industry development, Mater. Des. 32 (2011) 1684–1691 [CrossRef] [Google Scholar]
- V.A. Henriques, Titanium production for aerospace applications, J. Aerospace Technol. Manag. 1 (2009) 7–17 [CrossRef] [Google Scholar]
- F.M. Kgoete, A.P.I. Popoola, O.S.I. Fayomi, Advancement in the application of alloys and composites in the manufacture of aircraft component: a review, J. Phys.: Conf. Ser. 1378 (2019) 032049 [CrossRef] [Google Scholar]
- M. Haghshenas, Metal-matrix composites, Reference Module in Materials Science and Materials Engineering (2016), pp. 03950–03953 [Google Scholar]
- D.A. Jesson, J.F. Watts, The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification, Polym. Rev. 52 (2012) 321–354 [CrossRef] [Google Scholar]
- D.K. Rajak, D.D. Pagar, P.L. Menezes, E. Linul, Fiber-reinforced polymer composites: manufacturing, properties, and applications, Polymers 11 (2019) 1667 [CrossRef] [Google Scholar]
- A.M. Abazari, S.M. Safavi, G. Rezazadeh, L.G. Villanueva, Size effects on mechanical properties of micro/nano structures. ArXiv preprint arXiv:1508.01322 (2015) [Google Scholar]
- Southwest Center for Microsystems Education, A Comparison of Scale: Macro, Micro, Nano (2017), pp. 1–23 [Google Scholar]
- A.M. Abazari, S.M. Safavi, G. Rezazadeh, L.G. Villanueva, Size effects on mechanical properties of micro/nano structures. ArXiv preprint arXiv:1508.01322 (2015) [Google Scholar]
- P.K. Deshpande, J.H. Li, R.Y. Lin, Infrared processed Cu composites reinforced with WC particles, Mater. Sci. Eng. A 429 (2006) 58–65 [CrossRef] [Google Scholar]
- R.J.H. Wanhill, Physical property significances for aerospace structural materials, in Aerospace Materials and Material Technologies . (Springer, Singapore, 2017), pp. 143–157 [CrossRef] [Google Scholar]
- High Melting Point – an overview | ScienceDirect Topics. https://www.sciencedirect.com/topics/engineering/high-melting-point (accessed 30 April 2020) [Google Scholar]
- V.V. Vasiliev, E.V. Morozov, Advanced Mechanics of Composite Materials and Structures (Elsevier, 2018) [Google Scholar]
- Ö.E. Işmal, R. Paul, Composite textiles in high-performance apparel, in High-Performance Apparel (Woodhead Publishing, 2018), pp. 377–420 [Google Scholar]
- I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities, Arab. J. Chem. 12 (2017) 908 [Google Scholar]
- S.J. Park, M.K. Seo, Types of composites, in Interface Science and Technology (Elsevier, 2011), Vol. 18 , pp. 501–629 [CrossRef] [Google Scholar]
- R.-M. Wang, S.-R. Zheng, Y.-P. Zheng, Introduction to polymer matrix composites, Polym. Matrix Compos. Technol. (2011) 1–548 [Google Scholar]
- Metal Matrix Composites – an overview | Science Direct Topics. [Online]. Available: https://www.sciencedirect.com/topics/physics-and-astronomy/metal-matrix-composites [Accessed: 04-Mar-2020] [Google Scholar]
- W.R. Matizamhuka, Advanced ceramics-the new frontier in modern-day technology: Part I, J. Southern Afr. Inst. Min. Metall. 118 (2018) 757–764 [Google Scholar]
- R.H. Jones, C.H. Henager Jr, C.A. Lewinsohn, Environmental Effects on Engineered Materials (Pacific Northwest National Laboratory, Richland, Washington, 2001), p. 372 [Google Scholar]
- J.A. Halip, L.S. Hua, Z. Ashaari, P.M. Tahir, L.W. Chen, M.K.A. Uyup, Effect of treatment on water absorption behavior of natural fiber-reinforced polymer composites, in Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (Woodhead Publishing, 2019), pp. 141–156 [CrossRef] [Google Scholar]
- R. Taylor, Carbon matrix composites (2000) [Google Scholar]
- Composite Matrix Materials. (n.d.). Retrieved July 9, 2020. from https://www.azom.com/article.aspx?ArticleID=9814 [Google Scholar]
- D.R. Askeland, Polymers, in The Science and Engineering of Materials (Springer, US, 1996), pp. 488–548 [CrossRef] [Google Scholar]
- Aluminum Matrix - an overview | ScienceDirect Topics. (n.d.). Retrieved July 9, 2020, from https://www.sciencedirect.com/topics/engineering/aluminum-matrix [Google Scholar]
- A. Balasubramanian, Classification of Materials (2017), DOI: 10.13140/RG.2.2.12792.34567 [Google Scholar]
- Metal Matrix Composite – an overview | ScienceDirect Topics. (n.d.). Retrieved July 10, 2020, from https://www.sciencedirect.com/topics/materials-science/metal-matrix-composite [Google Scholar]
- N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, M. Koç, Review of magnesium-based biomaterials and their applications, J. Magn. Alloys 6 (2018) 23–43 [CrossRef] [Google Scholar]
- Type of reinforcements used for the composites. | Download Scientific Diagram. (n.d.). Retrieved July 9, 2020, from https://www.researchgate.net/figure/Type-of-reinforcements-used-for-the-composites_fig1_327983009 [Google Scholar]
- Natural fibre | Definition, Uses, & Facts | Britannica. [Online]. Available: https://www.britannica.com/topic/natural-fiber. [Accessed: 04-Mar-2020 [Google Scholar]
- L. Mohammed, M.N. Ansari, G. Pua, M. Jawaid, M.S. Islam, A review on natural fiber reinforced polymer composite and its applications, Int. J. Polym. Sci. (2015) [Google Scholar]
- D. Verma, I. Senal, Natural fiber-reinforced polymer composites: feasibility study for sustainable automotive industries, in Biomass, Biopolymer-Based Materials, and Bioenergy (Woodhead Publishing, 2019), pp. 103–122 [CrossRef] [Google Scholar]
- P.K. Mallick, Thermoplastics and thermoplastic–matrix composites for lightweight automotive structures, in Materials, Design and Manufacturing for Lightweight Vehicles (Woodhead Publishing, 2010), pp. 174–207 [CrossRef] [Google Scholar]
- K. Bilisik, G. Kaya, H. Ozdemir, M. Korkmaz, G. Erdogan, Applications of Glass Fibers in 3D Preform Composites, in Advances in Glass Science and Technology , InTech (2018) [Google Scholar]
- Kevlar - an overview | ScienceDirect Topics. (n.d.). Retrieved August 9, 2020, from https://www.sciencedirect.com/topics/engineering/Kevlar [Google Scholar]
- S.L. Ogin, P. Brøndsted, J. Zangenberg, Composite materials: constituents, architecture, and generic damage, in Modeling Damage, Fatigue and Failure of Composite Materials (Woodhead Publishing, 2016), pp. 3–23 [CrossRef] [Google Scholar]
- D. Verma, I. Senal, Natural fiber-reinforced polymer composites: Feasibiliy study for sustainable automotive industries. In Biomass, Biopolymer-Based Materials, and Bioenergy (2019), pp. 103–122. Woodhead Publishing [Google Scholar]
- A.B. Nair, R. Joseph, Eco-friendly bio-composites using natural rubber (NR) matrices and natural fiber reinforcements, in Chemistry, Manufacture and Applications of Natural Rubber (Woodhead Publishing, 2014), pp. 249–283 [Google Scholar]
- V. Gergely, H.P. Degischer, Comprehensive composite materials, in Metal Matrix Composites , edited by T.W. Clyne (2000), Vol. 3 [Google Scholar]
- M.C. Tanzi, S. Farè, G. Candiani, Foundations of Biomaterials Engineering (Academic Press, 2019) [Google Scholar]
- S.J. Park, M.K. Seo, Interface science and composites (Academic Press, 2011), Vol. 18 [Google Scholar]
- Particulate Composite - an overview | ScienceDirect Topics.[Online]. Available: https://www.sciencedirect.com/topics/materials-science/particulate-composite. [Accessed: 23-Feb-2020] [Google Scholar]
- R.V. Upadhyay, M.S. Pisuwala, K. Parekh, K. Raj, Thermal conductivity of flake-shaped iron particles based magneto rheological suspension: Influence of nano-magnetic particle concentration, J. Magn. Magn. Mater. 503 (2020) 166633 [CrossRef] [Google Scholar]
- R.E. Njoku, A.E. Okon, T.C. Ikpaki, Effects of variation of particle size and weight fraction on the tensile strength and modulus of periwinkle shell reinforced polyester composite, Nigerian J. Technol. 30 (2011) 87-93 [Google Scholar]
- Ceramic Fibers - Ceramic Fibre Wool Bulk Distributor/Channel Partner from Delhi (no date). Available at: https://www.indiamart.com/mg-materials/ceramic-fibers.html. (accessed: 14 January 2020) [Google Scholar]
- A. Vahid, P. Hodgson, Y. Li, Reinforced magnesium composites by metallic particles for biomedical applications, Mater. Sci. Eng. A 685 (2017) 349–357 [CrossRef] [Google Scholar]
- P.K. Deshpande, J.H. Li, R.Y. Lin, Infrared processed Cu composites reinforced with WC particles, Mater. Sci. Eng. A 429 (2006) 58–65 [CrossRef] [Google Scholar]
- L. Jong, Particle reinforced composites from acrylamide modified blend of styrene-butadiene and natural rubber, Polym. Compos. 40 (2019) 758–765 [CrossRef] [Google Scholar]
- R. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles—a review, Metals 4 (2014) 65–83 [CrossRef] [Google Scholar]
- F. Kundie, C.H. Azhari, A. Muchtar, Z.A. Ahmad, Effects of filler size on the mechanical properties of polymer-filled dental composites: a review of recent developments, J. Phys. Sci. 29 (2018) 141–165 [CrossRef] [Google Scholar]
- T.S. Sachit, M.A. Khan, Effect of particle size on mechanical and tribological behavior of LM4/SiCp based MMC’, Mater. Today: Proc. 5 (2018) 5901–5907 [CrossRef] [Google Scholar]
- B. Guo, B. Chen, X. Zhang, X. Cen, X. Wang, M. Song, S. Ni, J. Yi, T. Shen, Y. Du, Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes, Carbon 135 (2018) 224–235 [CrossRef] [Google Scholar]
- C. Onuoha, O. Onyemaobi, C. Anyakwo, G.C. Onuegbu, Effect of filler loading and particle size on the mechanical properties of periwinkle shell filled recycled polypropylene composites, Am. J. Eng. Res. 6 (2017) 72–79 [Google Scholar]
- M.A. Ashraf, W. Peng, Y. Zare, K.Y. Rhee, Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites, Nanoscale Res. Lett. 13 (2018) 214 [CrossRef] [Google Scholar]
- T.S. Sachit, M.A. Khan, Effect of particle size on mechanical and tribological behavior of LM4/SiCp based MMC, Mater. Today: Proc. 5 (2018) 5901–5907 [CrossRef] [Google Scholar]
- S.Y. Fu, X.Q. Feng, B. Lauke, Y.W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Compos. B: Eng. 39 (2008) 933–961 [CrossRef] [Google Scholar]
- R.E. Njoku, A.E. Okon, T.C. Ikpaki, Effects of variation of particle size and weight fraction on the tensile strength and modulus of periwinkle shell reinforced polyester composite, Niger. J. Technol. 30 (2011) 87–93 [Google Scholar]
- C. Onuoha, O.O. Onyemaobi, C.N. Anyakwo, G.C. Onuegbu, Effect of filler loading and particle size on the mechanical properties of periwinkle shell filled recycled polypropylene composites, Am. J. Eng. Res. 6 (2017) 72–79 [Google Scholar]
- I. Sulima, P. Figiel, M. Susniak, M. Swiatek, Sintering of TiB 2-Al composites using HP-HT method, Mater. Manufactur. Process. 33 (2008) 117–120 [Google Scholar]
- I.N. Ellis, Wakes in Inertial Fusion Plasmas, Doctoral dissertation, UCLA (2014) [Google Scholar]
- Conceptual diagram of single-walled carbon nanotube (SWCNT) (A) and… | Download Scientific Diagram. (n.d.). Retrieved July 11, 2020, from https://www.researchgate.net/figure/Conceptual-diagram-of-single-walled-carbon-nanotube-SWCNT-A-and-multi-walled-carbon_fig1_244592543 [Google Scholar]
- Carbon Nanotubes - an overview | ScienceDirect Topics. [Online]. Available: https://www.sciencedirect.com/topics/materials-science/carbon-nanotubes. [Accessed: 10-Feb-2020] [Google Scholar]
- A. Eatemadi et al., Carbon nanotubes: properties, synthesis, purification, and medical applications, Nanoscale Res. Lett. 9 (2014) 1–13 [CrossRef] [Google Scholar]
- P. Pandey, M. Dahiya, Carbon nanotubes: types, methods of preparation and applications, Int. J. Pharm. Sci. Res. 1 (2016) 15–21 [Google Scholar]
- A.O. Adegbenjo, P.A. Olubambi, J.H. Potgieter, E. Nsiah-Baafi, M.B. Shongwe, Interfacial reaction during high energy ball milling dispersion of carbon nanotubes into Ti6Al4V, J. Mater. Eng. Perform. 26 (2017) 6047–6056 [CrossRef] [Google Scholar]
- T.W. Clyne, F.R. Jones, Composites: interfaces in encyclopaedia of materials: science and technology, Mortensen A 3 (2001) 17 [Google Scholar]
- I. Topcu, H.O. Gulsoy, A.N. Gulluoglu, Evaluation of multi-walled CNT particulate reinforced Ti6Al4V alloy based composites creep behavior of materials under static loads, Gazi Univ. J. Sci. 32 (2019) 286–298. [Google Scholar]
- X.L. Wang, C.M. Hoffmann, C.H. Hsueh, G. Sarma, C.R. Hubbard, J.R. Keiser, Influence of residual stress on thermal expansion behavior, Appl. Phys. Lett. 75 (1999) 3294–3296 [CrossRef] [Google Scholar]
- W. Siva, I. Sankar, S.C. Amico, Ravindran, Effect of fiber volume fraction on the mechanical properties of coconut sheath/USP composite, J. Manufactur. Eng. 8 (2013) 60–63 [Google Scholar]
- R.G. Munro, Material properties of titanium diboride, J. Res. Natl. Inst. Stand. Technol. 105 (2000) 709 [CrossRef] [Google Scholar]
- I. Sulima, L. Jaworska, P. Pałka, P. Hyjek, P. Kurtyka, Influence of sintering temperature and CrB2 addition on properties of titanium diboride produced by spark plasma sintering, Compos. Theory Practice 16 (2016) 30–36 [Google Scholar]
- J. Yang, X. Jiao, W. Chen, W. Zhang, G. Wang, A novel extrusion for manufacturing TiBw/Ti6Al4V composite tubes with a quasi-continuous reinforced structure, Materials 10 (2017) 375 [CrossRef] [MathSciNet] [Google Scholar]
- D. Segal, Chemical synthesis of advanced ceramic materials (Cambridge University Press, 1991), Vol. 1 [Google Scholar]
- A. Rajabi, M.J. Ghazali, A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet – a review, Mater. Des. 67 (2015) 95–106 [CrossRef] [Google Scholar]
- H. Yanjun, L. Jinxu, L. Jianchong, L. Shukui, Z. Qinghe, C. Xingwang, Rapid preparation of TiC reinforced Ti6Al4V based composites by carburizing method through spark plasma sintering technique Rapid preparation of TiC reinforced Ti6Al4V based composites by carburizing method through spark plasma sintering technique, J. Mater. Des. 65 (2019) 94–97 [MathSciNet] [Google Scholar]
- L. Li, J. Wang, P. Lin, H. Liu, Microstructure and mechanical properties of functionally graded TiCp/Ti6Al4V composite fabricated by laser melting deposition, Ceram. Int. 43 (2017) 16638–16651 [CrossRef] [Google Scholar]
- Silicon Carbide – an overview | ScienceDirect Topics. (n.d.). Retrieved February 11, 2020, from https://www.sciencedirect.com/topics/materials-science/silicon-carbide [Google Scholar]
- V.A. Izhevskyi, L.A. Genova, J.C. Bressiani, A.H.A. Bressiani, Review article: silicon carbide. Structure, properties and processing, Cerâmica 46 (2000) 4–13 [Google Scholar]
- P. Poddar, V.C. Srivastava, P.K. De, K.L. Sahoo, Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process, Mater. Sci. Eng. A 460–461 (2007) 357–364 [CrossRef] [Google Scholar]
- C. Poletti, M. Balog, T. Schubert, V. Liedtke, C. Edtmaier, Production of titanium matrix composites reinforced with SiC particles, Compos. Sci. Technol. 68 (2008) 2171–2177 [CrossRef] [Google Scholar]
- R. Chaudhari, R. Bauri, Microstructure and mechanical properties of titanium processed by spark plasma sintering (SPS), Metallogr. Microstruct. Anal. 3 (2014) 30–35 [CrossRef] [Google Scholar]
- Z.Z. Fang, J.D. Paramore, P. Sun, K.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, M. Free, Powder metallurgy of titanium–past, present, and future, Int. Mater. Rev. 63 (2018) 407–459 [CrossRef] [Google Scholar]
- Titanium Nitride (TiN) Nanoparticles - Properties, Applications. (n.d.). Retrieved July 12, 2020, from https://www.azonano.com/article.aspx?ArticleID=3372 [Google Scholar]
- Titanium Nitride (TiN) Coating. (n.d.). Retrieved July 12, 2020, from http://www.matweb.com/search/DataSheet.aspx?MatGUID=ffbf753c500949db95e502e043f9a404 [Google Scholar]
- O.E. Falodun, B.A. Obadele, S.R. Oke, M.E. Maja, P.A. Olubambi, Synthesis of Ti-6Al-4V alloy with nano-TiN microstructure via spark plasma sintering technique, in IOP conference series: Materials science and engineering (IOP Publishing, 2017), Vol. 272, No. 1, p. 012029 [CrossRef] [Google Scholar]
- M. Selvakumar, P. Chandrasekar, B. Ravisankar, J.N. Balaraju, M. Mohanraj, Mechanical properties of Titanium –Titanium boride composites through nanoindentation and ultrasonic techniques — an evaluation perspective, Powder Metal. Metal. Ceram. 53 (2015) 557–565 [CrossRef] [Google Scholar]
- H. Izui, T. Shinohara, Mechanical properties of TiB/Ti-6Al-4V alloy composites fabricated by spark plasma sintering, Mech. Eng. J. (2017). DOI: 10.1299/mej.17-00267 [Google Scholar]
- L.J. Huang, L. Geng, A.B. Li, F.Y. Yang, H.X. Peng, In situ TiBw/Ti-6Al-4V composites with novel reinforcement architecture fabricated by reaction hot pressing, Scr. Mater. 60 (2009) 996–999 [CrossRef] [Google Scholar]
- R. Pederson, Microstructure and phase transformation of Ti-6Al-4V (Doctoral dissertation). Luleå tekniska universitet (2002) [Google Scholar]
- S. Gorsse, D. Miracle, Mechanical properties of Ti-6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements, Acta Mater. 51 (2003) 2427–2442 [CrossRef] [Google Scholar]
- S.I. Kundalwal, Review on modeling of mechanical and thermal properties of nano-and micro-composites, ArXiv preprint arXiv:1708.00764 (2017) [Google Scholar]
- A. ÊÛÛ, Chapter 1, (Jones 1975, (2006) 1–21 [Google Scholar]
- L. Hench, J. Jones eds., Biomaterials, artificial organs and tissue engineering (Elsevier, 2005) [Google Scholar]
- C. Kumudinie, Polymer–Ceramic Nanocomposites: Interfacial Bonding Agents (2001) [Google Scholar]
- J.A. Halip, L.S. Hua, Z. Ashaari, P.M. Tahir, L.W. Chen, M.K.A. Uyup, Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites, in Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (Woodhead Publishing, 2019), pp. 141–156 [CrossRef] [Google Scholar]
- C.H. Lee, A. Khalina, S.H. Lee, Importance of interfacial adhesion condition on characterization of plant–fiber-reinforced polymer composites: a review, Polymers 13 (2021) 438 [CrossRef] [Google Scholar]
- V. Kovačević, Surface and interface phenomenon in polymers (2008) [Google Scholar]
- Interfacial Bond – an overview | ScienceDirect Topics. (n.d.). Retrieved April 13, 2022, from https://www.sciencedirect.com/topics/engineering/interfacial-bond [Google Scholar]
- A. Shrivastava, Introduction to Plastics Engineering (William Andrew, 2018) [Google Scholar]
- G.S. Holister, C. Thomas, Fibre reinforced materials (1965) [Google Scholar]
- R. Singh, S. Singh, M.S.J. Hashmi, Implant materials and their processing technologies (2016) [Google Scholar]
- A.R.R. Bineli, A.P.G. Peres, A.L. Jardini, R. Maciel Filho, Direct metal laser sintering (DMLS): technology for design and construction of microreactors, in 6 CONGRESS OBRASILEIRO DE ENGENHARIA DE FABRICA ÇÃO (2011) [Google Scholar]
- E. Giner, V. Franco, A. Vercher, Estimation of the reinforcement factor ξ for calculating e2 with the Halpin–Tsai equations using the Finite Element Method, in ECCM16-16th European Conference on Composite Materials (2014) [Google Scholar]
- M. Seleso, M. Maringa, W.B. du Preez, Designing a ceramic particulate composite to enhance selected mechanical properties of TI6AL4V, in Rapid Product Development Association of South African (RAPDASA) 21st Annual International Conference, Jappie van Lill Hall, Central Central University of Technology, Free State, 3rd November 2020, South Africa (2020). Available at https://site.rapdasa.org/pre-conference-seminar/. [Google Scholar]
- D.R. Askeland, P.P. Phulé, W.J. Wright, D.K. Bhattacharya, The science and engineering of materials (2003) [Google Scholar]
- Y. Fan, J. Lou, D.M. Shinozaki, Microstructure dependent properties of polypropylene-clay nanocomposites, Appl. Polym. Sci. 103 (2007) 204–210 [CrossRef] [Google Scholar]
- J.C. Smith, Experimental values for the elastic constants of a particulate-filled glassy polymer, J. Res. Natl. Bureau Standards A 80 (1976) 45 [CrossRef] [Google Scholar]
- M.D. Kiran, H.K. Govindaraju, T. Jayaraju, N. Kumar, Effect of fillers on mechanical properties of polymer matrix composites, Mater. Today: Proc. 5 (2018) 22421–22424 [CrossRef] [Google Scholar]
- H. Zijm, N. Knofius, M.V.D. Heijden, Additive manufacturing and its impact on the supply chain, in Operations, logistics and supply chain management (Springer, Cham, 2019), pp. 521–543 [CrossRef] [Google Scholar]
- S. Negi, S. Dhiman, R.K. Sharma, Basics, applications and future of additive manufacturing technologies: a review, J. Manufactur. Technol. Res. 5 (2013) 75 [Google Scholar]
- T.G. Spears, S.A. Gold, In-process sensing in selective laser melting (SLM) additive manufacturing (2016). DOI: 10.1186/s40192-016-0045-4 [Google Scholar]
- F. Lupone, E. Padovano, F. Casamento, C. Badini, Process phenomena and material properties in selective laser sintering of polymers: a review, Materials 15 (2021) 183 [CrossRef] [Google Scholar]
- A. Al Rashid, S.A. Khan, S.G. Al-Ghamdi, M. Koç, Additive manufacturing of polymer nanocomposites: needs and challenges in materials, processes, and applications, J. Mater. Res. Technol. 14 (2021) 910–941 [CrossRef] [Google Scholar]
- D. Ravichandran, W. Xu, S. Jambhulkar, Y. Zhu, M. Kakarla, M. Bawareth, K. Song, Intrinsic field-induced nanoparticle assembly in three-dimensional (3D) printing polymeric composites, ACS Appl. Mater. Interfaces 13 (2021) 52274–52294 [CrossRef] [Google Scholar]
- T.A. Adegbola, E. Olorundaisi, O. Agboola, O.S.I. Fayomi, WITHDRAWN: Influence of fillers particles on material toughness properties during processing (2020) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.