Open Access
Manufacturing Rev.
Volume 10, 2023
Article Number 8
Number of page(s) 17
Published online 28 April 2023
  1. Y. Wang, Y. Du, P. Xu, R. Qiang, X. Han, Recent advances in conjugated polymer-based microwave absorbing materials, Polym. J. (Basel) 9 (2017) 29 [CrossRef] [Google Scholar]
  2. R. Panwar, J.R. Lee, Recent advances in thin and broadband layered microwave absorbing and shielding structures for commercial and defence applications, Funct. Compos. Struct. 1 (2019) 032001 [CrossRef] [Google Scholar]
  3. C.G. Jayalakshmi, A. Inamdar, A. Anand, B. Kandasubramanian, Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts, J. Appl. Polym. Sci. 136 (2019) 1–21 [Google Scholar]
  4. E. Struct, H.Y. Atay, Multi-functional materials for military aircrafts; radar absorbing and flame retardant composites, Res. Eng. Struct. Mat. 3 (2017) 45–54 [Google Scholar]
  5. V.D. Charris, M.G. José, Torres Analysis of radar cross section assessment methods and parameters affecting it for surface ships, Ship Technol. Res. 6 (2012) 91–106 [Google Scholar]
  6. J. Khan, W. Duan, H.M.R. Amir, Stealth based ship design on academic level and role of naval architects in stealth based ship design on academic level and role of naval architects in radar stealth for ships, ICMT Harbin 2012 (2012) 25–28 [Google Scholar]
  7. V.V. Varadan, Radar absorbing applications of metamaterials, 2007 IEEE Reg. Tech. Conf. 5 TPS (2007) 105–108 [Google Scholar]
  8. P.A. Zhukov, V.Y. Kirillov, The application of radar absorbing materials to reduce interference emissions from instruments and devices of spacecraft electrical systems, IOP Conf. Ser. Mater. Sci. Eng. 868 (2020) 012009 [CrossRef] [Google Scholar]
  9. C. Liu, D. Yu, D.W. Kirk, Y. Xu, Electromagnetic wave absorption of silicon carbide based materials, RSC Adv. 7 (2017) 595–605 [CrossRef] [Google Scholar]
  10. M. Isabirye, D.V. Raju, M. Kitutu, V. Yemeline, J. Deckers, J. Poesen Additional, We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists TOP 1%, Intech, (2012), p. 13 [Google Scholar]
  11. X. Hao, A review on the dielectric materials for high energy-storage application, J. Adv. Dielectr. 03 (2013) 1330001 [CrossRef] [Google Scholar]
  12. L. Kong et al., Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites, Carbon N. Y. 73 (2014) 185–193 [CrossRef] [Google Scholar]
  13. Z. Wang, G.-L. Zhao, Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2-20 GHz, Open J. Compos. Mater. 03 (2013) 17–23 [CrossRef] [Google Scholar]
  14. B.D. Che et al., The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites, Chem. Cent. J. 9 (2015) 10 [CrossRef] [Google Scholar]
  15. L. Li, S. Dong, X. Dong, X. Yu, Electromagnetic wave shielding / absorption performances of cementitious composites incorporating carbon nanotube metamaterial with helical chirality J. Compos. Mater. 54 (2020) 3717–3930 [CrossRef] [Google Scholar]
  16. D. Yawen, S. Mingqing, L. Chenguo, L. Zhuoqiu, Cement & concrete composites electromagnetic wave absorbing characteristics of carbon black cement-based composites, Cem. Concr. Compos. 32 (2010) 508–513 [CrossRef] [Google Scholar]
  17. B. Li, Z. Ji, S. Xie, J. Wang, J. Zhou, L. Zhu, Electromagnetic wave absorption properties of carbon black/cement‑based composites filled with porous glass pellets, J. Mater. Sci. Mater. Electron. 30 (2019) 12416–12425 [CrossRef] [Google Scholar]
  18. J. Yetunde, H. Soleimani, N. Yahya, Electromagnetic wave absorption of coconut fiber-derived porous activated carbon, Bpl. Soc. Esp. Ceram. V. 61 (2021) 1–11 [Google Scholar]
  19. V.A. Zhuravlev, V.I. Suslyaev, E.Y. Korovin, K.V. Dorozhkin, Electromagnetic waves absorbing characteristics of composite material containing carbonyl iron particles, Mater. Sci. Appl. 5 (2014) 803–811 [Google Scholar]
  20. R. Yang, W. Liang, S. Choi, C. Lin, The effects of size and shape of iron particles on the microwave absorbing properties of composite absorbers, IEEE Trans. Magn. 49 (2013) 4180–4183 [CrossRef] [Google Scholar]
  21. Y. Qing, W. Zhou, F. Luo, D. Zhu, Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber, Carbon N. Y. 48 (2010) 4074–4080 [CrossRef] [Google Scholar]
  22. W. Lai, Y. Wang, J. He, Effects of carbonyl iron powder (CIP) content on the electromagnetic wave absorption and mechanical properties of CIP/ABS composites, Polym. J. Basel. 12 (2020) 1694 [Google Scholar]
  23. M. Bayat, H. Yang, F. Ko, Effect of iron oxide nanoparticle size on electromagnetic properties of composite nanofibers, J. Compos. Mater. 52 (2018) 1723–1736 [CrossRef] [Google Scholar]
  24. F. Heydari, S. Salman, S. Afghahi, M. Manteghian, M. Javad, Nanosized amorphous (Co Fe) oxide particles decorated PANI – CNT: facile synthesis characterization magnetic electromagnetic properties and their application, Int. Nano Lett. 7 (2017) 275–28 [CrossRef] [Google Scholar]
  25. Z. Zhang, C. Yang, H. Cheng, X. Huang, Y. Zhu, The electromagnetic wave absorption performance and mechanical properties of cement- based composite material mixed with functional aggregates with high Fe2O3 and SiC, J. Compos. Adv. Mater. 31 (2021) 249–255 [Google Scholar]
  26. M. Derakhshani, E. Taheri-nassaj, M. Jazirehpour, Enhanced electromagnetic wave absorption performance of Ni e Zn ferrite through the added structural macroporosity, J. Mater. Res. Technol. 16 (2021) 700–714 [Google Scholar]
  27. A.A. Al-ghamdi, F. El-tantawy, New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced graphite / copper nanoparticles, Compos. Part A 41 (2010) 1693–1701 [CrossRef] [Google Scholar]
  28. B. Zhao et al., Enhanced electromagnetic wave absorbing nickel (Oxide)-Carbon nanocomposites, Ceram. Int. 45 (2019) 24474–24486 [CrossRef] [Google Scholar]
  29. S. Sharma, V. Patyal, P. Sudhakara, J. Singh, M. Petru, R.A. Ilyas, Mechanical, morphological, and fracture-deformation behavior of MWCNTs-reinforced (Al–Cu–Mg–T351) alloy cast nanocomposites fabricated by optimized mechanical milling and powder metallurgy techniques, Nanotechnol. Rev. 11 (2022) 65–85 [Google Scholar]
  30. B. Arash, H.S. Park, T. Rabczuk, Tensile fracture behavior of short carbon nanotube reinforced polymer composites: a coarse-grained model, Compos. Struct. 134 (2015) 981–988 [CrossRef] [Google Scholar]
  31. A. Fathy, O. El-kady, M.M.M. Mohammed, Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route, Trans. Nonferrous Met. Soc. China 25 (2015) 46–53 [CrossRef] [Google Scholar]
  32. S.S. Pattanayak, S.H. Laskar, S. Sahoo, Progress on agricultural residue-based microwave absorber: a review and prospects, J. Mater. Sci. 56 (2021) 4097–4119 [CrossRef] [Google Scholar]
  33. Y. Wang, J. Bo, C.H.E. Sai, Y.A.N. Lu, L.I. Zheng-xuan, L.I. Yong-feng, Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms, New Carbon Mater. 36 (2021) 1016–1030 [CrossRef] [Google Scholar]
  34. J.A. Phys, A. Celzard, X. Chen, Microwave absorption by carbon-based materials and structures J. Appl. Phys. 131 (2022) 200401 [CrossRef] [Google Scholar]
  35. J. Tang, S. Bi, X. Wang, G. Hou, X. Su, C. Liu, Excellent microwave absorption of carbon black / reduced graphene oxide composite with low loading, J. Mater. Sci. 54 (2019) 13990–14001 [CrossRef] [Google Scholar]
  36. Q. Ling, J. Sun, Q. Zhao, Q. Zhou, Effects of carbon black content on microwave absorbing and mechanical properties of linear low density polyethylene / ethylene-octene copolymer / calcium carbonate composites effects of carbon black content on microwave absorbing and mechanical properties, Polym. Plast. Technol. Eng. 50 (2011) 2559 [Google Scholar]
  37. S.K. Singh, M.J. Akhtar, K.K. Kar, Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber, ACS Appl. Mater. Interfaces 10 (2018) 24816–24828 [CrossRef] [Google Scholar]
  38. J. Shen, Y. Yao, Y. Liu, Preparation and characterization of CNT fi lms / silicone rubber composite with improved microwave absorption performance, Mater. Res. Express 6 (2019) 075610 [CrossRef] [Google Scholar]
  39. Y. Qing, X. Wang, Y. Zhou, Z. Huang, F. Luo, W. Zhou, Enhanced microwave absorption of multi-walled carbon nanotubes/epoxy composites incorporated with ceramic particles, Compos. Sci. Technol. 102 (2014) 161–168 [CrossRef] [Google Scholar]
  40. H.B. Baskey, M.J. Akhtar, T.C. Shami, Waves and Investigation and performance evaluation of carbon black- and carbon fibers-based wideband dielectric absorbers for X-band stealth applications, J. Electromagn. 28 (2014) 37–41 [Google Scholar]
  41. B.D. Che et al., The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites, Chem. Cent. J. 9 (2015) 1–13 [CrossRef] [Google Scholar]
  42. S.K. Singh, M.J. Akhtar, K.K. Kar, Synthesis of a lightweight nanocomposite based on polyaniline 3D hollow spheres integrated milled carbon fibers for efficient X-band microwave absorption, Ind. Eng. Chem. Res. 59 (2020) 9076–9084 [CrossRef] [Google Scholar]
  43. G. Li, T. Xie, S. Yang, J. Jin, J. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers, J. Phys. Chem. C. 116 (2012) 9196–9201 [CrossRef] [Google Scholar]
  44. E.J. Jelmy, M. Lakshmanan, N.K. Kothurkar, Microwave absorbing behavior of glass fiber reinforced MWCNT-PANi/epoxy composite laminates, Mater. Today Proc. 26 (2018) 36–43 [Google Scholar]
  45. P. Mehdizadeh, H. Jahangiri, Effect of carbon black content on the microwave absorbing properties of CB/epoxy composites, J. Nanostructures 6 (2016) 140–148 [Google Scholar]
  46. Y.S. Lee et al., Electromagnetic properties performance of MWCNTs/polyester composites in X-band, MATEC Web Conf. 150 (2018) 1–5 [Google Scholar]
  47. X. Liu, Z. Zhang, Y. Wu, Absorption properties of carbon black/silicon carbide microwave absorbers, Compos. Part B Eng. 42 (2011) 326–329 [CrossRef] [Google Scholar]
  48. H. Breiss, A. El Assal, R. Benzerga, C. Méjean, A. Sharaiha, Long carbon fibers for microwave absorption: effect of fiber length on absorption frequency band, Micromachines 11 (2020) 1–18 [Google Scholar]
  49. A.E.L. Assal, R. Benzerga, M. Badard, C. Me, Carbon fibers loaded composites for microwave absorbing application: effect of fiber length and dispersion process on dielectric properties, J. Electron. Mater. 49 (2020) 2999–3008 [CrossRef] [Google Scholar]
  50. J. Zhou, Y. Li, M. Zhang, E. Xu, T. Yang, Effect of lay-up configuration on the microwave absorption properties of carbon fiber reinforced polymer composite materials, Mater. Today Commun. 26 (2021) 101960 [CrossRef] [Google Scholar]
  51. S.K. Singh, A.K. Yadav, R. Pal, M.J. Akhtar, K.K. Kar, Impact of particle sizes on the microwave absorption properties of nano-sized Carbon black/epoxy composites, Adv. Mater. Proc. 3 (2018) 497–500 [Google Scholar]
  52. H. Bizhani, V. Nayyeri, M. Khanjarian, O.M. Ramahi, Gradient composite microwave absorber: investigation into loading profiles of conductive nanofiller, J. Appl. Phys. 127 (2020) 014902 [CrossRef] [Google Scholar]
  53. R. Kaur, G.D. Aul, V. Chawla, Improved reflection loss performance of dried banana leaves pyramidal microwave absorbers by coal for application in anechoic chambers, Progr. Electromagn. Res. 43 (2015) 157–164 [CrossRef] [Google Scholar]
  54. S.S. Pattanayak, S.H. Laskar, S. Sahoo, Modelling Coconut Fiber Coir and Charcoal Powder Made Microwave Absorber over X-band Frequency, 2019 IEEE 5th Int. Conf. Converg. Technol. I2CT 2019 (2019) 14–17 [Google Scholar]
  55. Y.S. Lee et al., Study of single layer microwave absorber based on rice husk Ash/CNTs composites, Indones. J. Electr. Eng. Comput. Sci. 14 (2019) 929–936 [Google Scholar]
  56. M. Li et al., Recent advancements of plant-based natural fiber–reinforced composites and their applications, Compos. Part B Eng. 200 (2020) 108254 [CrossRef] [Google Scholar]
  57. A. Arul Marcel Moshi, D. Ravindran, S.R. Sundara Bharathi, V. Suganthan, G. Kennady Shaju Singh, Characterization of new natural cellulosic fibers – a comprehensive review, IOP Conf. Ser. Mater. Sci. Eng. 574 (2019) 012013 [CrossRef] [Google Scholar]
  58. C. Xia, J. Yu, S.Q. Shi, Y. Qiu, L. Cai, H.F. Wu, Natural fi ber and aluminum sheet hybrid composites for high electromagnetic interference shielding performance, Compos. Part B 114 (2017) 121–127 [CrossRef] [Google Scholar]
  59. C. Xia et al., Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering, Appl. Surf. Sci. 362 (2016) 335–340 [CrossRef] [Google Scholar]
  60. Z. Ding, S.Q. Shi, H. Zhang, L. Cai, Electromagnetic shielding properties of iron oxide impregnated kenaf bast fiberboard, Compos. Part B Eng. 78 (2015) 266–271 [CrossRef] [Google Scholar]
  61. T. Kala, K. Maharshi, S. Patel, R. Panwar, Electromagnetic and mechanical characterization of iron reinforced natural fiber composites for microwave absorbing applications, Adv. Compos. Mater. 30 (2021) 559–569 [CrossRef] [Google Scholar]
  62. W. Li, F. Guo, X. Wei, Y. Du, Y. Chen, Preparation of Ni/C porous fibers derived from jute fibers for high-performance microwave absorption, RSC Adv. 10 (2020) 36644–36653 [CrossRef] [Google Scholar]
  63. G. Gultom, B. Wirjosentono, K. Sebayang, M. Ginting, Preparation and characterization of microwave-absorption of Sarulla North Sumatra Zeolite and ferric oxide-filled polyurethane nanocomposites, Proc. Chem. 19 (2016) 441–446 [CrossRef] [Google Scholar]
  64. M.I. Hussein et al., Microwave Absorbing properties of metal functionalized-CNT-polymer composite for stealth applications, Sci. Rep. 10 (2020) 1–11 [NASA ADS] [CrossRef] [Google Scholar]
  65. X. Zhang, S. Qi, Y. Zhao, L. Wang, J. Fu, M. Yu, Synthesis and microwave absorption properties of Fe@carbon fibers, RSC Adv. 10 (2020) 32561–32568 [CrossRef] [Google Scholar]
  66. T. Ben Ghzaiel, W. Dhaoui, F. Schoenstein, P. Talbot, F. Mazaleyrat, Substitution effect of Me = Al, Bi, Cr, Mn to the microwave properties of polyaniline/BaMeFe11O19for absorbing electromagnetic waves, J. Alloys Compd. 692 (2017) 774–786 [CrossRef] [Google Scholar]
  67. S. Jeon, J. Kim, K.H. Kim, Microwave absorption properties of graphene oxide capsulated carbonyl iron particles, Appl. Surf. Sci. 475 (2019) 1065–1069 [CrossRef] [Google Scholar]
  68. M. Wu et al., Microwave magnetic properties of Co50/(SiO2) 50 nanoparticles, Appl. Phys. Lett. 80 (2002) 4404–4406 [CrossRef] [Google Scholar]
  69. Y. Gao, X. Gao, J. Li, S. Guo, Microwave absorbing and mechanical properties of alternating multilayer carbonyl iron powder-poly(vinyl chloride) composites, J. Appl. Polym. Sci. 135 (2018) 1–10 [Google Scholar]
  70. Y. Sun, F. Xiao, X. Liu, C. Feng, C. Jin, Preparation and electromagnetic wave absorption properties of core-shell structured Fe3O4-polyaniline nanoparticles, RSC Adv. 3 (2013) 22554–22559 [CrossRef] [Google Scholar]
  71. R. Panwar, S. Puthucheri, V. Agarwala, D. Singh, An efficient use of waste material for development of cost-effective broadband radar wave absorber, J. Electromagn. Waves Appl. 29 (2015) 1238–1255 [CrossRef] [Google Scholar]
  72. A. Shah et al., Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/epoxy resin composite plates, Elsevier Ltd, (2015), p. 131 [Google Scholar]
  73. H. Xing et al., Excellent microwave absorption properties of Fe ion-doped SnO2/multi-walled carbon nanotube composites, RSC Adv. 6 (2016) 41656–41664 [CrossRef] [Google Scholar]
  74. Q. Wang, J. Tang, S. Xiao, M. Wang, S.Q. Shi, Natural fiber-based composites with high hydrophobic, magnetic, and EMI shielding properties via iron oxide in situ synthesis and copper film deposition, BioResources 15 (2020) 8384–8402 [CrossRef] [Google Scholar]
  75. N. Yesmin, V. Chalivendra, Electromagnetic shielding effectiveness of glass fiber/ epoxy laminated composites with multi-scale reinforcements, J. Compos. Sci. 5 (2021) 1–12 [Google Scholar]
  76. J.K. Jang, J.M. Hyun, D.S. Son, J.R. Lee, Nondestructive and electromagnetic evaluations of stealth structures damaged by lightning strike, J. Intell. Mater. Syst. Struct. 30 (2019) 2567–2574 [CrossRef] [Google Scholar]
  77. S. Demiroglu, V. Singaravelu, M.Ö. Seydibeyoğlu, M. Misra, A.K. Mohanty, The use of nanotechnology for fibre-reinforced polymer composites, Fiber Technol. Fiber-Reinforced Compos. (2017) 277–297 [CrossRef] [Google Scholar]
  78. M.S.A. Fathi, Mechanical properties of nanocomposite materials: a review, J. Southwest Jiaotong Univ. 55 (2020) 1–23 [Google Scholar]
  79. M. Abu-Okail et al., Effect of dispersion of alumina nanoparticles and graphene nanoplatelets on microstructural and mechanical characteristics of hybrid carbon/glass fibers reinforced polymer composite, J. Mater. Res. Technol. 14 (2021) 2624–2637 [CrossRef] [Google Scholar]
  80. P. Greil, Perspectives of nano-carbon based engineering materials, Adv. Eng. Mater. 17 (2015) 124–137 [CrossRef] [Google Scholar]
  81. H.Y. Nezhad, V.K. Thakur, Effect of morphological changes due to increasing carbon nanoparticles content on the quasi-static mechanical response of epoxy resin, Polym. J. (Basel) 10 (2018) 1106 [CrossRef] [Google Scholar]
  82. M. Megahed, A.A. Megahed, M.A. Agwa, Mechanical properties of on/off-axis loading for hybrid glass fiber reinforced epoxy filled with silica and carbon black nanoparticles, Mater. Technol. 33 (2018) 398–405 [CrossRef] [Google Scholar]
  83. G.L. Devnani, S. Sinha, Effect of nanofillers on the properties of natural fiber reinforced polymer composites, Mater. Today Proc. 18 (2019) 647–654 [CrossRef] [Google Scholar]
  84. M. Rasoolpoor, R. Ansari, M.K. Hassanzadeh-Aghdam, Influences of carbon nanotubes on low velocity impact performance of metallic nanocomposite plates – a coupled numerical approach, Mech. Based Des. Struct. Mach. 0 (2020) 1–15 [Google Scholar]
  85. Z. Naghizadeh, M. Faezipour, M. Hossein Pol, G. Liaghat, High velocity impact response of carbon nanotubes-reinforced composite sandwich panels, J. Sandw. Struct. Mater. 22 (2020) 303–324 [CrossRef] [Google Scholar]
  86. E. Haryati, K. Dahlan, O. Togibasa, K. Dahlan, Protein and minerals analyses of mangrove crab shells (Scylla serrata) from Merauke as a foundation on bio-ceramic components, J. Phys. Conf. Ser. 1204 (2019) 5–9 [Google Scholar]
  87. A. Soundhar, J. Kandasamy, Mechanical, chemical and morphological analysis of crab shell/sisal natural fiber hybrid composites, J. Nat. Fibers 00 (2019) 1–15 [Google Scholar]
  88. M.M. Rehman, M. Zeeshan, K. Shaker, Y. Nawab, Effect of micro-crystalline cellulose particles on mechanical properties of alkaline treated jute fabric reinforced green epoxy composite, Cellulose 26 (2019) 9057–9069 [CrossRef] [Google Scholar]
  89. H. Fouad, L.K. Kian, M. Jawaid, M.D. Alotaibi, O.Y. Alothman, M. Hashem, Characterization of microcrystalline cellulose isolated from conocarpus fiber, Polym. J. (Basel). 12 (2020) 1–11 [Google Scholar]
  90. K. Bhowmik, N. Khutia, M. Tarfaoui, K. Das, Influence of multiwalled carbon nanotube on progressive damage of epoxy / carbon fiber reinforced structural composite, Polym. Compos. 43 (2022) 7751–7772 [CrossRef] [Google Scholar]
  91. K.I. Ismail, M.T.H. Sultan, A.U.M. Shah, A.F.M. Nor, A.M.R. Azmi, A.H. Ariffin, Effect of carbon nanotube (CNT) concentration on flexural properties of flax hybrid bio-composite, AIP Conf. Proc. 2030 (2018) 020212 [CrossRef] [Google Scholar]
  92. A.F.M. Nor et al., The effects of multi-walled CNT in Bamboo/Glass fibre hybrid composites: Tensile and flexural properties, BioResources 13 (2018) 4404–4415 [Google Scholar]
  93. X. Shen, J. Jia, C. Chen, Y. Li, J.K. Kim, Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition, J. Mater. Sci. 49 (2014) 3225–3233 [CrossRef] [Google Scholar]
  94. H.Y. Kordkheili, S.E. Shehni, G. Niyatzade, Effect of carbon nanotube on physical and mechanical properties of natural fiber/glass fiber/cement composites, J. For. Res. 26 (2014) 247–25 [Google Scholar]
  95. T. Rajmohan, K. Mohan, K. Palanikumar, Synthesis and characterization of Multi wall Carbon Nano Tube (MWCNT) filled hybrid banana-glass fiber reinforced composites, Appl. Mech. Mater. 767 (2015) 193–198 [CrossRef] [Google Scholar]
  96. T. Bera, S.K. Acharya, P. Mishra, Synthesis, mechanical and thermal properties of carbon black/epoxy composites, Int. J. Eng. Sci. Technol. 10 (2018) 12–20 [CrossRef] [Google Scholar]
  97. S.I. Abdullah, M.N.M. Ansari, Mechanical properties of graphene oxide (GO)/epoxy composites, HBRC J. 11 (2015) 151–156 [CrossRef] [Google Scholar]
  98. Y. Shimamura et al., Tensile mechanical properties of carbon nanotube/epoxy composite fabricated by pultrusion of carbon nanotube spun yarn preform, Compos. Part A Appl. Sci. Manuf. 62 (2014) 32–38 [CrossRef] [Google Scholar]
  99. E.A. Campos et al., Synthesis, characterization and applications of iron oxide nanoparticles – a short review, Nanotechnol Sci Appl. 7 (2015) 267–276 [Google Scholar]
  100. O.T. Bafakeeh, W.M. Shewakh, A. Abu-Oqail, W. Abd-Elaziem, M. Abdel Ghafaar, M. Abu-Okail, Synthesis and characterization of hybrid fiber-reinforced polymer by adding ceramic nanoparticles for aeronautical structural applications, Polym. J. (Basel). 13 (2021) 4116 [CrossRef] [Google Scholar]
  101. C. Wang et al., Controlled growth of silver nanoparticles on carbon fibers for reinforcement of both tensile and interfacial strength, RSC Adv. 6 (2016) 14016–14026 [CrossRef] [Google Scholar]
  102. R.Y. Nkwaju, J.N.Y. Djobo, J.N.F. Nouping, P.W.M. Huisken, J.G.N. Deutou, L. Courard, Iron-rich laterite-bagasse fibers based geopolymer composite: mechanical, durability and insulating properties, Appl. Clay Sci. 183 (2019) 105333 [CrossRef] [Google Scholar]
  103. E.E. Feldshtein, L.N. Dyachkova, G.M. Królczyk, On the evaluation of certain strength characteristics and fracture features of iron-based sintered MMCs with nanooxide additives, Mater. Sci. Eng. A 756 (2019) 455–463 [CrossRef] [Google Scholar]
  104. F. Tang, I.E. Anderson, S.B. Biner, Microstructures and mechanical properties of pure Al matrix composites reinforced by Al-Cu-Fe alloy particles, Mater. Sci. Eng. A 363 (2003) 20–29 [CrossRef] [Google Scholar]
  105. V.S. Piffer, K. Soares, A.G.S. Galdino, Evaluation of mechanical and thermal properties of PP/iron ore tailing composites, Compos. Part B Eng. 221 (2021) 109001 [CrossRef] [Google Scholar]
  106. V.R. Arun Prakash, A. Rajadurai, Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite, Appl. Surf. Sci. 384 (2016) 99–106 [CrossRef] [Google Scholar]
  107. T. Dinesh, A. Kadirvel, A. Vincent, Effect of silane modified E-glass fibre/iron(III) oxide reinforcements on UP blended epoxy resin hybrid composite, Silicon 11 (2019) 2487–2498 [CrossRef] [Google Scholar]
  108. A.G. Adeniyi, Mechanics of advanced composite structures mechanical, crystallographic, and microstructural analysis of polymer composites developed from iron filings and polystyrene wastes, Mech. Adv. Mater. Struct. 9 (2022) 137–145 [Google Scholar]
  109. V.R. Arun Prakash, A. Rajadurai, Mechanical, thermal and dielectric characterization of iron oxide particles dispersed glass fiber epoxy resin hybrid composite, Dig. J. Nanomater. Biostructures 11 (2016) 373–380 [Google Scholar]
  110. S. Julyes Jaisingh, V. Selvam, M. Suresh Chandra Kumar, K. Thyagarajan, Studies on mechanical properties of kevlar fiber reinforced Iron (III) oxide nanopartcles filled up/epoxy nanocomposites, Adv. Mater. Res. 747 (2013) 409–412 [CrossRef] [Google Scholar]
  111. Y. He et al., Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application, Compos. Part A 108 (2018) 12–22. [CrossRef] [Google Scholar]
  112. M. Yadav, K.Y. Rhee, S.J. Park, D. Hui, Mechanical properties of Fe3O4/GO/chitosan composites, Compos. Part B Eng. 66 (2014) 89–96 [CrossRef] [Google Scholar]
  113. C. Yue et al., Three-dimensional printing of cellulose nanofibers reinforced PHB/PCL/Fe3O4 magneto-responsive shape memory polymer composites with excellent mechanical properties, Addit. Manuf. 46 (2021) 102146 [Google Scholar]
  114. T.E. Faculty, International Journal of Polymeric Materials and Polymeric Biomaterials Mechanical Properties of Polymers Filled with Iron Powder, Int. J. Polym. Mater. 57 (2008) 258–265 [CrossRef] [Google Scholar]
  115. J.M.L. Reis, D.C. Moreira, L.C.S. Nunes, L.A. Sphaier, Evaluation of the fracture properties of polymer mortars reinforced with nanoparticles, Compos. Struct. 93 (2011) 3002–3005 [CrossRef] [Google Scholar]
  116. X. Zhou, W. Long, X. Zhou, Study on microstructure and mechanical properties of Fe-based amorphous particle-reinforced Al-based matrix composites, Adv. Compos. Mater. 29 (2020) 1–10 [CrossRef] [MathSciNet] [Google Scholar]
  117. T. Sun, H. Fan, Z. Wang, X. Liu, Z. Wu, Modified nano Fe2O3-epoxy composite with enhanced mechanical properties, Mater. Des. 87 (2015) 10–16 [CrossRef] [Google Scholar]
  118. W. Gul, H. Alrobei, S.R.A. Shah, A. Khan, Effect of iron oxide nanoparticles on the physical properties of medium density fiberboard, Polym. J. (Basel). 12 (2020) 1–18 [Google Scholar]
  119. Y. Qing, W. Zhou, F. Luo, D. Zhu, Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings, J. Magn. Magn. Mater. 321 (2009) 25–28 [CrossRef] [Google Scholar]
  120. E. Najafi Kani, A.H. Rafiean, A. Alishah, S. Hojjati Astani, S.H. Ghaffar, The effects of Nano-Fe2O3 on the mechanical, physical and microstructure of cementitious composites, Constr. Build. Mater. 266 (2021) 121137 [CrossRef] [Google Scholar]
  121. K.K. Alaneme, E.A. Okotete, A. Victoria, M.O. Bodunrin, Applicability of metallic reinforcements for mechanical performance enhancement in metal matrix composites: a review, Arab J. Basic Appl. Sci. 26 (2019) 311–330 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.