Open Access
Issue
Manufacturing Rev.
Volume 10, 2023
Article Number 9
Number of page(s) 12
DOI https://doi.org/10.1051/mfreview/2023007
Published online 29 May 2023
  1. D. Ponnamma, C. Jose Chirayil, K.K. Sadasivuni, L. Somasekharan, S. Yaragalla, J. Abraham, S. Thomas, Special Purpose Elastomers: Synthesis, Structure-Property Relationship, Compounding, Processing and Applications, in Advances in Elastomers 1: Advanced structured materials, 1st edn. (Springer, Berlin, Heidelberg, 2013), p. 47–82 [CrossRef] [Google Scholar]
  2. P. Thamizhvalavan, S. Arivazhagan, N. Yuvaraj, B. Ramesh, Machinability study of abrasive aqua jet parameters on hybrid metal matrix composite, Mater. Manuf. Process. 34 (2019) 321–344 [CrossRef] [Google Scholar]
  3. M. Putz, M. Dix, F. Morczinek, M. Dittrich, Suspension technology for abrasive waterjet (AWJ) cutting of ceramics, Proc. CIRP (2018) 367–370 [CrossRef] [Google Scholar]
  4. F. Morczinek, M. Putz, M. Dix, Comparison of abrasive water jet technologies in terms of performance and kerf geometry accuracy for cutting ceramics, Int. J. Sustain. Manuf. 4 (2020) 201–215 [Google Scholar]
  5. D.R. Tripathi, K.H. Vachhani, S. Kumari, A.K. Dinbandhu, Experimental investigation on material removal rate during abrasive water jet machining of GFRP composites, Mater. Today: Proc. (2019) 1389–1392 [Google Scholar]
  6. K. Ramesha, N. Santhosh, K. Kiran, N. Manjunath, H. Naresh, Effect of the process parameters on machining of GFRP composites for different conditions of abrasive water suspension jet machining, Arab. J. Sci. Eng. 44 (2019) 7933–7943 [CrossRef] [Google Scholar]
  7. R. Shetty, A. Hegde, Taguchi based fuzzy logic model for optimization and prediction of surface roughness during AWJM of DRCUFP composites, Manufactur. Rev. 9 (2022) 2 [CrossRef] [EDP Sciences] [Google Scholar]
  8. W. Sami Abushanab, E.B. Moustafa, M. Harish, S. Shanmugan, A.H. Elsheikh, Experimental investigation on surface characteristics of Ti6Al4V alloy during abrasive water jet machining process, Alexandria Eng. J. 61 (2022) 7529–7539 [CrossRef] [Google Scholar]
  9. P.A. Dumbhare, S. Dubey, Y.V. Deshpande, A.B. Andhare, P.S. Barve, P.A. Dumbhare, S. Dubey, Y.V. Deshpande, A.B. Andhare, P.S. Barve, Modelling and multi-objective optimization of surface roughness and kerf taper angle in abrasive water jet machining of steel, J. Braz. Soc. Mech. Sci. Eng. 40 (2018) 259 [CrossRef] [Google Scholar]
  10. M. Sreekumar, S. Purushothaman, M.S. Srinivas, J.K. Katiyar, M.R. Sankar, A review of additives in abrasive water jet machining and their performance, Proc. Inst. Mech. Eng. J: J. Eng. Tribol. (2022) in Press [Google Scholar]
  11. H. Louis, F. Pude, C. Von Rad, R. Versemann, Abrasive water suspension jet technology fundamentals, application and developments, Weld World. 51 (2007) 11–16 [CrossRef] [Google Scholar]
  12. W.J. Tseng, K.H. Teng, The effect of surfactant adsorption on sedimentation behaviours of Al2O3-toluene suspensions, Mater. Sci. Eng. A. 318 (2001) 102–110 [CrossRef] [Google Scholar]
  13. Y. P. Liao, C.Y. Wang, Y. N. Hu, Y. X. Song, The slurry for glass polishing by micro abrasive suspension jets, Adv. Mater. Res. 69–70 (2009) 322–327 [CrossRef] [Google Scholar]
  14. Z. Yang, Y. Zhen, Y. Tao, Study on the characteristics of grinding fluid in extrusion grinding machining, In J. Phys. Conf. Ser. 2029 (2021) 012054 [CrossRef] [Google Scholar]
  15. J. Borkowski, P. Borkowski, Criteria of effective materials cutting with suspension abrasive-water jet, Arch. Civ. Mech. Eng. 9 (2009) 5–14 [Google Scholar]
  16. A. Gupta, Performance optimization of abrasive fluid jet for completion and stimulation of oil and gas wells, J. Energy Resour. Technol. 134 (2012) 021001 [CrossRef] [Google Scholar]
  17. X. Wang, D. Zhou, G. Zhu, C. Guo, Rheological properties of two high polymers suspended in an abrasive slurry jet, E-Poly. 21 (2021) 186–193 [Google Scholar]
  18. N. Dixit, V. Sharma, P. Kumar, Development and characterization of Xanthan gum-based abrasive media and performance analysis using abrasive flow machining, J. Manuf. Process. 67 (2021) 101–115 [CrossRef] [Google Scholar]
  19. O. Kozhus, G. Barsukov, The research of the agglomeration process during the formation of an abrasive-polymer compound for waterjet cutting in a fluidized bed installation, Int. J. Adv. Manuf. Technol. 117 (2021) 2511–2518 [CrossRef] [Google Scholar]
  20. X. Wang, D. Zhou, G. Zhu, C. Guo, Rheological properties of two high polymers suspended in an abrasive slurry jet, E-Polymers 21 (2021) 186–193 [CrossRef] [Google Scholar]
  21. D. Anjaiah, A.M. Chincholkar, Cutting of glass using low pressure abrasive water suspension jet with the addition of zycoprint polymer, in 19th International Conference Water Jet (ICWJ) (2008), p. 105–119 [Google Scholar]
  22. C.Y. Wang, P.X. Yang, J.M. Fan, Y.X. Song, Effect of slurry and nozzle on hole machining of Glass by micro abrasive suspension jets, Key Eng. Mater. 404 (2009) 177–183 [CrossRef] [Google Scholar]
  23. D. Patel, P. Tandon, Experimental investigations of gelatin-enabled abrasive water slurry jet machining, Int. J. Adv. Manuf. Technol. 89 (2017) 1193–1208 [CrossRef] [Google Scholar]
  24. A.K. Amar, P. Tandon, Investigation of gelatin enabled abrasive water slurry jet machining (AWSJM), CIRP J. Manuf. Sci. Technol. 33 (2021) 1–14 [CrossRef] [Google Scholar]
  25. D. Feng, L. Shi, C. Guo, F. Wang, Y. Chen, Numerical and experimental study on the flow characteristics of abrasive slurry jet with polymer additives, Int. J. Adv. Manuf. Technol. 95 (2017) 3289–3299 [Google Scholar]
  26. C. Qiang, F. Wang, C. Guo, Study on impact stress of abrasive slurry jet in cutting stainless steel, Int. J. Adv. Manuf. Technol. 100 (2019) 297–309 [CrossRef] [Google Scholar]
  27. C. Qiang, L. Li, X. Wang, C. Guo, Study on the mechanism for sparks in cutting metal with abrasive suspension water jet, Int. J. Adv. Manuf. Technol. 106 (2020) 417–430 [CrossRef] [Google Scholar]
  28. D. Deepak, A. Devineni, Effect of process parameters on the surface roughness produced during machining of ceramics using AWSJ: An experimental investigation by Taguchi signal to noise ratio, in WJTA-IMCA Conference and Expo, New Orleans, Louisiana (2017) [Google Scholar]
  29. E. Van Wijk, D.F. James, M. Papini, J.K. Spelt, Micro-machining with abrasive slurry-Jets: effects of dissolved polymer concentration and nozzle design, Int. J. Adv. Manuf. Technol. 102 (2019) 317–331 [CrossRef] [Google Scholar]
  30. F. Wang, Q. Xu, D. Feng, C. Guo, Experiment study on performance of abrasive slurry jet with or without high polymer in stainless steel machining, Int. J. Adv. Manuf. Technol. 95 (2018) 2449–2456 [CrossRef] [Google Scholar]
  31. K. Kowsari, J. Schwartzentruber, J.K. Spelt, M. Papini, Erosive smoothing of abrasive slurry-jet micro-machined channels in Glass, PMMA, and sintered ceramics: experiments and roughness model, Precis. Eng. 49 (2017) 332–343 [CrossRef] [Google Scholar]
  32. K. Kowsari, H. Nouraei, D.F. James, J.K. Spelt, M. Papini, Abrasive slurry jet micro-machining of holes in brittle and ductile materials, J. Mater. Process. Technol. 214 (2014) 1909–1920 [CrossRef] [Google Scholar]
  33. P. Maurya, G.S. Vijay, C.K. Raghavendra, Investigation on performance and kerf characteristics during cryogenic-assisted suspension-type abrasive water jet machining of acrylonitrile butadiene rubber, J. Comp. Sci. 16 (2022) 397 [Google Scholar]
  34. R. Melentiev, F. Fang, Recent advances and challenges of abrasive jet machining, CIRP J. Manuf. Sci. Technol. 22 (2018) 1–20 [CrossRef] [Google Scholar]
  35. J. Folkes, Waterjet − an innovative tool for manufacturing, J. Mater. Process. Technol. 209 (2009) 6181–6189 [CrossRef] [Google Scholar]
  36. D. Hedeker, Multilevel models for ordinal and nominal variables, in Handbook of Multilevel Analysis, 1st edn. (Springer, New York, 2008) [Google Scholar]
  37. R.V. Rao, Jaya: An Advanced Optimization Algorithm and Its Engineering Applications, 1st edn. (Springer, Cham: Cham, Switzerland, 2019) [Google Scholar]
  38. U. Caydas, A. Hascalik, A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method, J. Mater. Process. Technol. 202 (2008) 574–582 [CrossRef] [Google Scholar]
  39. J. Valicek, S. Hloch, D. Kozak, Surface geometric parameters proposal for the advanced control of abrasive waterjet technology, Int. J. Adv. Manuf. Technol. 41 (2009) 323–328 [CrossRef] [Google Scholar]
  40. V.D.P. Rao, M. Mrudula, V.N. Geethika, Multi-objective optimization of parameters in abrasive water jet machining of carbon-glass fibre-reinforced hybrid composites, J. Inst. Eng. India Ser. D. 100 (2019) 55–66 [CrossRef] [Google Scholar]
  41. U. Aich, S. Banerjee, A. Bandyopadhyay, P.K. Das, Abrasive water jet cutting of borosilicate glass, Proc. Mater. Sci. 6 (2014) 775–785 [CrossRef] [Google Scholar]
  42. S. Prabhu, M. Uma, B.K. Vinayagam, Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process, Neural Comput. Appl. 26 (2015) 41–55 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.