Open Access
Review
Issue
Manufacturing Rev.
Volume 10, 2023
Article Number 10
Number of page(s) 33
DOI https://doi.org/10.1051/mfreview/2023009
Published online 08 June 2023
  1. K. Nimel Sworna Ross et al., Investigation of surface modification and tool wear on milling Nimonic 80A under hybrid lubrication, Tribol. Int. (2020) 1–12 [Google Scholar]
  2. S. Akincioglu, H. Gokkaya, I. Uygur, The effects of cryogenic-treated carbide tools on tool wear and surface roughness of turning of Hastelloy C22 based on Taguchi method, Int. J. Adv. Manuf. Technol. 82 (2016) 303–314 [CrossRef] [Google Scholar]
  3. N. Khanna, P. Shah, C. Agrawal, F. Pusavec, H. Hegab, Inconel 718 machining performance evaluation using indigenously developed hybrid machining facilities: experimental investigation and sustainability assessment, Int. J. Adv. Manuf. Technol. 106 (2020) 4987–4999 [CrossRef] [Google Scholar]
  4. A. Suarez, F. Veiga, L.N.L. de Lacalle, R. Polvorosa, A. Wretland, An investigation of cutting forces and tool wear in turning of Haynes 282, J. Manuf. Process. 37 (2019) 529–540 [CrossRef] [Google Scholar]
  5. A. Kumar, K. Maity, Modeling of machining parameters affecting flank wear and surface roughness in hot turning of Monel-400 using response surface methodology (RSM), Measurement 137 (2019) 375–381 [CrossRef] [Google Scholar]
  6. K.V. Ramanan, S. Ramesh Babu, M. Jebaraj, K. Nimel Sworna Ross, Face turning of Incoloy 800 under MQL and nano-MQL environments, Mater. Manuf. Process. 36 (2021) 1769–1780 [CrossRef] [Google Scholar]
  7. C.V. Yildirim, T. Kivak, F. Erzincanli, Influence of different cooling methods on tool life, wear mechanisms and surface roughness in the milling of Nickel‑based Waspaloy with WC tools, Arab. J. Sci. Eng. 44 (2019) 7979–7995 [CrossRef] [Google Scholar]
  8. E.P. Bonhin et al., Effect of machining parameters on turning of VAT32 ® superalloy with ceramic tool, Mater. Manuf. Process. (2019) 1–7 [Google Scholar]
  9. S. Singh, Superalloys Report, Tech. Rep. (2016) 1–40 [Google Scholar]
  10. W. Chunchun, J. Keyu, C. Gang, Hot compression deformation characteristics of Nimonic alloy as-forged, J. Phys. Conf. Ser. 1676 (2020) 1–7 [Google Scholar]
  11. N. Prasad Eswara, R.J. Wanhill, Aerospace Materials and Material Technologies 1 (2017) [Google Scholar]
  12. A. Behera, Advanced Materials (Springer, Cham, 2022) [CrossRef] [Google Scholar]
  13. S. Miller, Advanced materials mean advanced engines, Interdiscip. Sci. Rev. 21 (1996) 117–129 [CrossRef] [Google Scholar]
  14. R. M’Saoubi et al., High performance cutting of advanced aerospace alloys and composite materials, CIRP Ann. Manuf. Technol. 64 (2015) 557–580 [CrossRef] [Google Scholar]
  15. O. Ozgun, H.O. Gulsoy, F. Findik, R. Yilmaz, Microstructure and mechanical properties of injection moulded Nimonic-90 superalloy parts, Powder Metall. 55 (2012) 405–414 [CrossRef] [Google Scholar]
  16. S. Metal Corporation, NIMONIC alloy 75, SMC-058 (2004), pp. 1–4 [Google Scholar]
  17. G. Khajuria, M.F. Wani, High-temperature friction and wear studies of Nimonic 80A and Nimonic 90 against Nimonic 75 under dry sliding conditions, Tribol. Lett. 65 (2017) 1–26 [CrossRef] [Google Scholar]
  18. S. metals Corporation, Nimonic 263, SMC-054 (2004), pp. 1–12 [Google Scholar]
  19. R. Choudhary, V. Kumar, Y. Batra, A. Singh, Performance and surface integrity of Nimonic75 alloy machined by electrical discharge machining, Mater. Today Proc. 2 (2015) 3481–3490 [CrossRef] [Google Scholar]
  20. H. Bisaria, P. Shandilya, Experimental investigation on wire electric discharge machining (WEDM) of Nimonic C-263 superalloy, Mater. Manuf. Process. 34 (2019) 83–92 [CrossRef] [Google Scholar]
  21. S.A. Sonawane, M.L. Kulkarni, Optimization of machining parameters of WEDM for Nimonic-75 alloy using principal component analysis integrated with Taguchi method, J. King Saud Univ. – Eng. Sci. 30 (2018) 250–258 [Google Scholar]
  22. P. Pant, P.S. Bharti, Electrical Discharge Machining (EDM) of nickel-based nimonic alloys: a review, Mater. Today Proc. 25 (2019) 765–772 [Google Scholar]
  23. M. Singh, S. Singh, Multi-objective optimization of electrical discharge machining of Nimonic 75 using teaching learning based optimization (TLBO) algorithm, Mater. Today Proc. 24 (2020) 576–584 [CrossRef] [Google Scholar]
  24. M.E. Korkmaz, N. Yaşar, M. Günay, Numerical and experimental investigation of cutting forces in turning of Nimonic 80A superalloy, Int. J. Eng. Sci. Technol. 23 (2020) 664–673 [Google Scholar]
  25. M.E. Korkmaz, P. Verleysen, M. Günay, Identification of constitutive model parameters for nimonic 80A superalloy, Trans. Indian Inst. Met. 71 (2018) 2945–2952 [CrossRef] [Google Scholar]
  26. S.W. Kang, S.J. Heo, J.H. Yoo, J.H. Kang, Hardness prediction of a cold rolled nimonic 80A exhaust valve spindle, J. Achiev. Mater. Manuf. Eng. 94 (2019) 13–21 [Google Scholar]
  27. K. Venkatesan, S. Devendiran, D. Sachin, J. Swaraj, Investigation of machinability characteristics and comparative analysis under different machining conditions for sustainable manufacturing, Meas. J. Int. Meas. Confed. 154 (2020) 1–20 [Google Scholar]
  28. N. Khanna et al., Optimization of power consumption associated with surface roughness in ultrasonic assisted turning of Nimonic-90 using hybrid particle swarm-simplex method, Materials (Basel). 12 (2019) 1–20 [Google Scholar]
  29. C. Ezilarasan, V.S. Senthil Kumar, A. Velayudham, An experimental analysis and measurement of process performances in machining of nimonic C-263 super alloy, Measurement 46 (2013) 185–199 [CrossRef] [Google Scholar]
  30. J. Jadav, K.R.V. Rajulapati, N. Eswaraprasad, and K. Bhanu Sankara Rao, Effect of temperature on tensile flow behaviour of Nimonic C-263 alloy, Mater. Today Proc. 5 (2018) 5475–5480 [CrossRef] [Google Scholar]
  31. S. Metal Corporation, Nimonic, Special metals corporation, www.specialmetals.com [Google Scholar]
  32. P.S. Jadhav, C.P. Mohanty, S.S. Shirguppikar, Cryogenic treatment of Nimonic alloy-hard turning : state -of- the-art, challenges and future directions, Mater. Today Proc. 18 (2019) 4120–4132 [CrossRef] [Google Scholar]
  33. D.G. Thakur, B. Ramamoorthy, L. Vijayaraghavan, Study on the machinability characteristics of superalloy Inconel 718 during high speed turning, Mater. Des. 30 (2009) 1718–1725 [Google Scholar]
  34. S.H. Musavi, B. Davoodi, S.A. Niknam, Effects of reinforced nanoparticles with surfactant on surface quality and chip formation morphology in MQL-turning of superalloys, J. Manuf. Process. 40 (2019) 128–139 [CrossRef] [Google Scholar]
  35. Chetan, S. Ghosh, P.V. Rao, Performance evaluation of deep cryogenic processed carbide inserts during dry turning of Nimonic 90 aerospace grade alloy, Tribol. Int. 115 (2017) 397–408 [CrossRef] [Google Scholar]
  36. Chetan, B.C. Behera, S. Ghosh, P.V. Rao, Wear behavior of PVD TiN coated carbide inserts during machining of Nimonic 90 and Ti6Al4V superalloys under dry and MQL conditions, Ceram. Int. 42 (2016) 14873–14885 [CrossRef] [Google Scholar]
  37. A. Bordin, S. Bruschi, A. Ghiotti, P.F. Bariani, Analysis of tool wear in cryogenic machining of additive manufactured Ti6Al4V alloy, Wear 328–329 (2015) 89–99 [CrossRef] [Google Scholar]
  38. A. Thakur, S. Gangopadhyay, Influence of tribological properties on the performance of uncoated, CVD and PVD coated tools in machining of Incoloy 825, Tribol. Int. 102 (2016) 198–212 [CrossRef] [Google Scholar]
  39. C. Ezilarasan, V.S. Senthil Kumar, A. Velayudham, Effect of machining parameters on surface integrity in machining Nimonic C-263 super alloy using whisker-reinforced ceramic insert, J. Mater. Eng. Perform. 22 (2013) 1619–1628 [CrossRef] [Google Scholar]
  40. G.M. Krolczyk et al., Ecological trends in machining as a key factor in sustainable production – a review, J. Clean. Prod. 218 (2019) 601–615 [CrossRef] [Google Scholar]
  41. R.P. Gama, M.V. Ribeiro, Effects of cutting fluid application in the performance of the nimomic 80A turning, Key Eng. Mater. 656–657 (2015) 243–250 [CrossRef] [Google Scholar]
  42. K. Zhuang, X. Zhang, D. Zhu, H. Ding, Employing preheating- and cooling-assisted technologies in machining of Inconel 718 with ceramic cutting tools: towards reducing tool wear and improving surface integrity, Int. J. Adv. Manuf. Technol. 80 (2015) 1815–1822 [CrossRef] [Google Scholar]
  43. T. Patel et al., Machinability analysis of nickel-based superalloy Nimonic 90: a comparison between wet and LCO2 as a cryogenic coolant, Int. J. Adv. Manuf. Technol. 113 (2021) 3613–3628 [Google Scholar]
  44. A. Singh, S. Ghosh, S. Aravindan, Flank wear and rake wear studies for arc enhanced HiPIMS coated AlTiN tools during high speed machining of nickel-based superalloy, Surf. Coatings Technol. 381 (2020) 1–15 [Google Scholar]
  45. A. Thakur, S. Gangopadhyay, A.M. Mohanty, K. Maity, Experimental assessment on performance of TiN/TiCN/Al2 O3/ZrCN coated tool during dry machining of Nimonic C-263, Int. J. Mach. Mach. Mater. 18 (2016) 452–465 [Google Scholar]
  46. V.K. Velmurugan, K. Venkateshan, S. Devendiran, A.T. Mathew, Dry machining of Nimonic 263 alloy using PVD and CVD inserts, Innov. Des. Anal. Dev. Pract. Aerosp. Automot. Eng. Lect. Notes Mech. Eng. (2019) 179–198 [Google Scholar]
  47. C. Ezilarasan, V.S. Senthil Kumar, A. Velayudham, K. Palanikumar, Assessment of factors influencing tool wear on the machining of Nimonic C-263 alloy with PVD coated carbide inserts, Adv. Mater. Res. 291–294 (2011) 794–799 [CrossRef] [Google Scholar]
  48. Chetan, S. Ghosh, P.V. Rao, Comparison between sustainable cryogenic techniques and nano-MQL cooling mode in turning of nickel-based alloy, J. Clean. Prod. 231 (2019) 1036–1049 [CrossRef] [Google Scholar]
  49. F.J. Xavier, B. Ravi, D. Jayabalakrishnan, C. Ezilarasan, V. Jayaseelan, G. Elias, Experimental study on surface roughness and flank wear in turning of Nimonic C263 under dry cutting conditions, J. Nanomater. 2021 (2021) 1–11 [CrossRef] [Google Scholar]
  50. M. Dhananchezian, K. Rajkumar, Comparative study of cutting insert wear and roughness parameter (Ra) while turning Nimonic 90 and Hastelloy C-276 by coated carbide inserts, Mater. Today Proc. 22 (2020) 1409–1416 [CrossRef] [Google Scholar]
  51. M. Singh, S. Gangopadhyay, Effect of cutting parameter and cutting environment on surface integrity during machining of Nimonic C-263a Ni based superalloy, 2017 Int. Conf. Adv. Mech. Ind. Autom. Manag. Syst. (2017), pp. 231–238 [Google Scholar]
  52. V. Chavan, S. Kadam, M. Sadaiah, Performance of alumina-based ceramic inserts in high-speed machining of nimonic 80A, Mater. Manuf. Process. 34 (2019) 8–17 [CrossRef] [Google Scholar]
  53. K. Venkatesan, A. Thakur, A comparative study on machinability characteristics in dry machining of Nimonic 263 alloy using coated carbide inserts, Mater. Today Proc. 5 (2018) 12443–12452 [CrossRef] [Google Scholar]
  54. M. Gunay, M.E. Korkmaz, N. Yasar, Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments, J. Manuf. Process. 56 (2020) 678–687 [CrossRef] [Google Scholar]
  55. K. Venkatesan, S. Devendiran, A. Thakur, V. Ashish Chauhan, P.V. Pavan Kalyan, Study on influence of machinability characteristics in machining of nimonic 90A alloy using copper oxide nanofluid in MQL mode, Int. J. Mech. Eng. Technol. 9 (2018) 978–986 [Google Scholar]
  56. Chetan, S. Ghosh, P.V. Rao, Specific cutting energy modeling for turning nickel-based Nimonic 90 alloy under MQL condition, Int. J. Mech. Sci. 146–147 (2018) 25–38 [CrossRef] [Google Scholar]
  57. M.E. Korkmaz, M.K. Gupta, M. Boy, N. Yaşar, G.M. Krolczyk, M. Günay, Influence of duplex jets MQL and nano-MQL cooling system on machining performance of Nimonic 80A, J. Manuf. Process. 69 (2021) 112–124 [CrossRef] [Google Scholar]
  58. V. Kannan, Experimental study of an eco-friendly turning process of nimonic 75 combining minimum quantity lubrication and hexagonal boron nitride-enhanced neem and jatropha oil nanofluids, J. Inst. Eng. Ser. C 103 (2022) 785–812 [CrossRef] [Google Scholar]
  59. P.S. Jadhav, C.P. Mohanty, T.K. Hotta, M. Gupta, An optimal approach for improving the machinability of Nimonic C-263 superalloy during cryogenic assisted turning, J. Manuf. Process. 58 (2020) 693–705 [CrossRef] [Google Scholar]
  60. S. Senthil Kumar, M.P. Sudeshkumar, C. Ezilarasan, S. Palani, J. Veerasundaram, Modelling and simulation of machining attributes in dry turning of aircraft materials Nimonic C263 using CBN, Manufactur. Rev. 8 (2021) 30 [CrossRef] [EDP Sciences] [Google Scholar]
  61. S.C. Bose, C.S.P. Rao, Modelling and prediction of surface roughness, cutting force and temperature while machining Nimonic-75 and Nicrofer C-263 super alloys using artificial neural network, Int. J. Mech. Eng. Technol. 3 (2012) 599–613 [Google Scholar]
  62. C. Ezilarasan, V.S. Senthil Kumar, A. Velayudham, K. Palanikumar, Modeling and analysis of surface roughness on machining of Nimonic C-263 alloy by PVD coated carbide insert, Trans. Nonferrous Met. Soc. China 21 (2011) 1986–1994 [CrossRef] [Google Scholar]
  63. C. Ezilarasan, V.S. Senthil Kumar, A. Velayudham, Theoretical predictions and experimental validations on machining the Nimonic C-263 super alloy, Simul. Model. Pract. Theory 40 (2014) 192–207 [CrossRef] [Google Scholar]
  64. M. Krishna et al., Application of MOORA & COPRAS integrated with entropy method for multi-criteria decision making in dry turning process of Nimonic C263, Manuf. Rev. 9 (2022) 1–10 [Google Scholar]
  65. S. Lakshmana Kumar, M. Thenmozhi, R.M. Bommi, C. Ezilarasan, V. Sivaraman, S. Palani, Surface roughness evaluation in turning of Nimonic C263 super alloy using 2D DWT histogram equalization, J. Nanomater. 2022 (2022) 1–11 [CrossRef] [Google Scholar]
  66. R.M. Bommi, C. Ezilarasan, M.P. Sudeshkumar, T. Vinoth, Estimation of flank wear in turning of nimonic C263 super alloy based on novel MSER algorithm and deep patten network, Russ. J. Nondestruct. Test. 58 (2022) 140–156 [Google Scholar]
  67. A.H. Elsheikh et al., A comprehensive review on residual stresses in turning, Adv. Manuf. 10 (2022) 287–312 [CrossRef] [Google Scholar]
  68. S. Gowthaman, T. Jagadeesha, Neetu, Effect of severe plastic deformation through machining on the microstructure and corrosion behavior of end milled nimonic 263 alloy, Mater. Lett. 275 (2020) 1–5 [Google Scholar]
  69. S. Gowthaman, T. Jagadeesha, Experimental investigations on the effect of severe plastic deformation through end milling on X-Ray peak broadening and microcrystalline characteristics of Nimonic 263, Trans. Indian Inst. Met. 73 (2020) 1215–1226 [CrossRef] [Google Scholar]
  70. S. Gowthaman, T. Jagadeesha, Influence of radial rake angle and cutting conditions on friction during end milling of Nimonic 263, Int. J. Adv. Manuf. Technol. 109 (2020) 247–260 [CrossRef] [Google Scholar]
  71. S. Gowthaman, T. Jagadeesha, Experimental study on the surface and interface phenomenon changes by means of contact angle measurement on slot milled nimonic 263 alloy, Mater. Lett. 285 (2021) [Google Scholar]
  72. C. Ezilarasan, J. Francis Xavier, P. Shanmugaselvam, P. Balu, M. Nagaraj, Experimental analysis on machining attributes in milling of nickel based super alloy Nimonic C-263, Adv. Mater. Process. Technol. (2021) 1–13 [Google Scholar]
  73. S. Gowthaman, T. Jagadeesha, Effect of severe plastic deformation during slot milling on wear resistance and surface characteristics of nimonic 263 alloy, Eng. Res. Express 3 (2021) [Google Scholar]
  74. S. Gowthaman, T. Jagadeesha, Influence of cutting environment and machining parameters on the cutting force and surface roughness of slot milled Nimonic 263 alloy, Multiscale Multidiscip. Model. Exp. Des. (2021) [Google Scholar]
  75. S. Gowthaman, T. Jagadeesha, Experimental investigation on friction formation during slot milling of Nimonic263, Mater. Manuf. Process. 36 (2021) 1403–1413 [CrossRef] [Google Scholar]
  76. S. Gowthaman, T. Jagadeesha, Comparative study on the critical effect of radial rake angle and machining parameters on the formation of vibration amplitude during end milling of Nimonic 263, Sadhana – Acad. Proc. Eng. Sci. 46 (2021) 1–13 [Google Scholar]
  77. S. Gowthaman, T. Jagadeesha, V. Dhinakaran, Influence of machining behavior on severe deformation and corrosion resistance of end milled Nimonic 263 alloy, Sadhana – Acad. Proc. Eng. Sci. 46 (2021) 1–9 [Google Scholar]
  78. S. Shekhar, S. Gowthaman, T. Jagadeesha, Effect of MQL, wet and dry lubrication on functional behavior of end milled nimonic-263, IOP Conf. Ser. Mater. Sci. Eng. 912 (2020) 1–12 [Google Scholar]
  79. K. Nimel Sworna Ross, G. Manimaran, Effect of cryogenic coolant on machinability of difficult‑to‑machine Ni–Cr alloy using PVD‑TiAlN coated WC tool, J. Br. Soc. Mech. Sci. Eng. 41 (2019) 1–14 [CrossRef] [Google Scholar]
  80. B. Podder, S. Paul, Improvement of machinability in end milling of Nimonic C-263 by application of high pressure coolant, Int. J. Mach. Mach. Mater. 11 (2012) 418–433 [Google Scholar]
  81. K.N.S. Ross, G. Manimaran, Machining investigation of Nimonic-80A superalloy under cryogenic CO2 as coolant using PVD-TiAlN/TiN coated tool at 45° nozzle angle, Arab. J. Sci. Eng. 45 (2020) 9267–9281 [CrossRef] [Google Scholar]
  82. N.S. Ross, M. Mia, S. Anwar, M.G.M. Saleh, S. Ahmad, A hybrid approach of cooling lubrication for sustainable and optimized machining of Ni-based industrial alloy, J. Clean. Prod. 321 (2021) [Google Scholar]
  83. N.S. Ross et al., Impact of hybrid cooling approach on milling and surface morphological characteristics of Nimonic 80A alloy, J. Manuf. Process. 73 (2022) 428–439 [CrossRef] [Google Scholar]
  84. H. Hassanpour, M.H. Sadeghi, S. Shajari, M. Emami, Empirical modeling and analysis of surface roughness in milling process of Nickel-based super alloy Nimonic 115 through response surface methodology, Adv. Mater. Res. 325 (2011) 430–435 [CrossRef] [Google Scholar]
  85. P. Giridhar Reddy, S. Gowthaman, T. Jagadeesha, Optimization of cutting parameters based on surface roughness and cutting force during end milling of nimonic C-263 alloy, 3rd Int. Conf. Adv. Mech. Eng. 912 (2020) 1–9 [Google Scholar]
  86. S. Gowthaman, T. Jagadeesha, Experimental investigation of surface morphological changes during end milling of nimonic 263, Surf. Topogr. Metrol. Prop. 7 (2019) [Google Scholar]
  87. C. Ezilarasan, M.S. Nagaraj, A.J.P. Kumar, A. Velayudham, R. Betala, Experimental analysis of process parameters in drilling nimonic C263 alloy under nano fluid mixed MQL environment, Manuf. Rev. 8 (2021) 1–20 [Google Scholar]
  88. M. Nagaraj, A.J.P. Kumar, C. Ezilarasan, R. Betala, Finite element modeling in drilling of Nimonic C-263 alloy using deform-3D, Comput. Model. Eng. Sci. 118 (2019) 679–692 [Google Scholar]
  89. S. Lakshmana Kumar, V. Jacintha, A. Mahendran, R.M. Bommi, M. Nagaraj, U. Kandasamy, A machine learning approach to optimize, model, and predict the machining factors in dry drilling of nimonic C263, Adv. Mater. Sci. Eng. (2022) [Google Scholar]
  90. A. Kale, N. Khanna, A review on cryogenic machining of super alloys used in aerospace industry, Proc. Manuf. 7 (2017) 191–197 [Google Scholar]
  91. N. Mohd Abbas, D.G. Solomon, M. Fuad Bahari, A review on current research trends in electrical discharge machining (EDM), Int. J. Mach. Tools Manuf. 47 (2007) 1214–1228 [CrossRef] [Google Scholar]
  92. T. Muthuramalingam, B. Mohan, A review on influence of electrical process parameters in EDM process, Arch. Civ. Mech. Eng. 15 (2015) 87–94 [Google Scholar]
  93. D. Sahu, S.K. Sahu, T. Jadam, S. Datta, Electro-discharge machining performance of Nimonic 80A: an experimental observation, Arab. J. Sci. Eng. 44 (2019) 10155–10167 [CrossRef] [Google Scholar]
  94. U.A. Kumar, G. Saidulu, P. Laxminaryana, Experimental investigation of process parameters for machining of nimonic alloy 75 using wire-cut EDM, Mater. Today Proc. 27 (2020) 1362–1368 [CrossRef] [Google Scholar]
  95. R.K. Shastri, C.P. Mohanty, Sustainable electrical discharge machining of Nimonic C263 superalloy, Arab. J. Sci. Eng. (2021) [Google Scholar]
  96. R.K. Shastri, C.P. Mohanty, Machinability investigation on Nimonic C263 alloy in electric discharge machine, Mater. Today Proc. 26 (2019) 529–533 [Google Scholar]
  97. S. Ramesh, P. Jenarthanan, Investigating the performance of powder mixed electric discharge machining of Nimonic 75 by using different tool materials, World J. Eng. (2017) [Google Scholar]
  98. R.K. Shastri, C.P. Mohanty, A cost effective approach to explore the electrical discharge machined surface characteristics of Nimonic C263 superalloy, J. Mater. Eng. Perform. 31 (2022) 9748–9767 [CrossRef] [Google Scholar]
  99. J. Vivek, P.V.A. Kumar, K.A.S. Lewise, V. Velmurugan, Improvement in the graphite electrode wear characteristic of electrical discharge machined Nimonic 90 through plasma nitriding, laser hardening and duplex process, Sadhana - Acad. Proc. Eng. Sci. 47 (2022) [Google Scholar]
  100. P.R. Dewan, P.K. Kundu, On Titanium powder mixed electric discharge machining of Nimonic C-263, J. Inst. Eng. Ser. D (2022) [Google Scholar]
  101. S. Singh, A. Pandey, Some studies into electrical discharge machining of Nimonic75 super alloy using rotary copper disk electrode, J. Mater. Eng. Perform. 22 (2013) 1290–1303 [CrossRef] [Google Scholar]
  102. R.B.R. Chekuri, R. Kalluri, R. Siriyala, J.K. Palakollu, A study on die sinking EDM of Nimonic C-263 super alloy: an intelligent approach to predict the process parameters using ANN, Int. J. Eng. Technol. 7 (2018) 651–654 [Google Scholar]
  103. R.B.R. Chekuri, R. Kalluri, J.K. Palakollu, R. Siriyala, Modeling and optimization of machining high performance nickel based super alloy Nimonic C-263 using die sinking EDM, Int. J. Mech. Eng. Robot. Res. 8 (2019) 196–201 [CrossRef] [Google Scholar]
  104. S. Sharma, U.K. Vates, A. Bansal, Optimization of machining characteristics for EDM of different nickel-based alloys by embodying of fuzzy, grey relational and Taguchi technique, World J. Eng. (2020) [Google Scholar]
  105. A. Goswami, J. Kumar, Optimization in wire-cut EDM of Nimonic-80A using Taguchi’s approach and utility concept, Eng. Sci. Technol. 17 (2014) 236–246 [Google Scholar]
  106. B. Singh, J.P. Misra, Empirical modeling of average cutting speed during WEDM of gas turbine alloy, MATEC Web Conf. 249 (2018) 1–5 [Google Scholar]
  107. A. Goyal, A. Pandey, P. Sharma, S.K. Sharma, Study on Ni-based super alloyusing cryogenic treated electrode by Taguchi methodology, Mater. Today Proc. 4 (2017) 2068–2076 [CrossRef] [Google Scholar]
  108. K.K. Jangra, V. Kumar, V. Kumar, An experimental and comparative study on rough and trim cutting operation in WEDM of hard to machine materials, Procedia Mater. Sci. 5 (2014) 1603–1612 [CrossRef] [Google Scholar]
  109. A. Mandal, A.R. Dixit, S. Chattopadhyaya, A. Paramanik, Improvement of surface integrity of Nimonic C 263 super alloy produced by WEDM through various post-processing techniques, Int. J. Adv. Manuf. Technol. 93 (2017) 433–443 [CrossRef] [Google Scholar]
  110. B. Singh, J.P. Misra, Empirical modelling of wear ratio during WEDM of Nimonic 263, Mater. Today Proc. 5 (2018) 23612–23618 [CrossRef] [Google Scholar]
  111. V. Kumar, K.K. Jangra, V. Kumar, and N. Sharma, GA-based optimisation using RSM in WEDM of Nimonic-90: A nickel-based super alloy, Int. J. Ind. Syst. Eng. 28 (2018) 53–69 [Google Scholar]
  112. S. Singh Nain, R. Sai, P. Sihag, S. Vambol, V. Vambol, Use of machine learning algorithm for the better prediction of SR peculiarities of WEDM of Nimonic-90 superalloy, Arch. Mater. Sci. Eng. 95 (2019) 12–19 [CrossRef] [Google Scholar]
  113. H. Singh, V. Kumar, J. Kapoor, Optimization of WEDM process parameters in machining Nimonic 75 alloy using brass wire, Multidiscip. Model. Mater. Struct. 16 (2020) 1189–1202 [Google Scholar]
  114. A. Goswami, J. Kumar, Surface topography and Kerf study of Nimonic 80A using Wire-cut EDM, Mater. Sci. Forum 808 (2015) 35–41 [Google Scholar]
  115. A. Goswami, J. Kumar, Investigation of surface integrity, material removal rate and wire wear ratio for WEDM of Nimonic 80A alloy using GRA and Taguchi method, Eng. Sci. Technol. 17 (2014) 173–184 [Google Scholar]
  116. A. Goswami, J. Kumar, Trim cut machining and surface integrity analysis of Nimonic 80A alloy using wire cut EDM, Eng. Sci. Technol. 20 (2017) 175–186 [Google Scholar]
  117. M.S. Rao, N. Venkaiah, Multi-response optimisation for MRR and Ra in WEDM process of nimonic-263 super alloy, Int. J. Mater. Prod. Technol. 56 (2018) 187–206 [CrossRef] [Google Scholar]
  118. T. Sathish, BCCS approach for the parametric optimization in machining of Nimonic-263 alloy using RSM, Mater. Today Proc. 5 (2018) 14416–14422 [CrossRef] [Google Scholar]
  119. T. Chaudhary, A.N. Siddiquee, A.K. Chanda, M.H. Abidi, A. Al-Ahmari, Multi-response optimization for Nimonic alloy miniature gear fabrication using wire electrical discharge machining, Adv. Mech. Eng. 12 (2020) 1–13 [Google Scholar]
  120. T. Chaudhary, A.N. Siddiquee, A.K. Chanda, S. Ahmad, I.A. Badruddin, Z.A. Khan, Multiple response optimization of dimensional accuracy of nimonic alloy miniature gear machined on wire Edm using entropy topsis and pareto Anova, Comput. Model. Eng. Sci. 126 (2021) 241–259 [Google Scholar]
  121. S. Ashok Sonawane, M.L. Kulkarni, Multi-quality response optimization of wire EDM for Ni-75 using PCA based utility theory, Mater. Today Proc. 5 (2018) 4584–4591 [CrossRef] [Google Scholar]
  122. K. Mouralova et al., Precision machining of nimonic C 263 super alloy using WEDM, Coatings 10 (2020) 1–20 [Google Scholar]
  123. M. Singh, S. Singh, Multi-objective optimization of electro discharge machining of Nimonic 75 Using Taguchi-based Gray Relational analysis, J. Adv. Manuf. Syst. 20 (2021) 95–110 [CrossRef] [Google Scholar]
  124. M. Singh, S. Singh, Multiple response optimization of ultrasonic assisted electric discharge Machining of Nimonic 75: A Taguchi-Grey relational analysis approach, Mater. Today Proc. 45 (2021) 4731–4736 [CrossRef] [Google Scholar]
  125. A. Alhodaib, P. Shandilya, A.K. Rouniyar, H. Bisaria, Experimental investigation on silicon powder mixed-edm of nimonic-90 superalloy, Metals 11 (2021) [Google Scholar]
  126. A. Goyal, A. Garimella, P. Saini, Optimization of surface roughness by design of experiment techniques during wire EDM machining, Mater. Today Proc. 47 (2021) 3195–3197 [CrossRef] [Google Scholar]
  127. Senkathir, R. Manoj Samson, R. Nirmal, R. Ranjith, Parametric optimization of wire-EDM machining of Nimonic 80a using response surface methodology, IOP Conf. Ser. Mater. Sci. Eng. 1130 (2021) [Google Scholar]
  128. R.K. Shastri, C.P. Mohanty, Sustainable electrical discharge machining of Nimonic C263 superalloy, Arab. J. Sci. Eng. 46 (2021) 7273–7293 [CrossRef] [Google Scholar]
  129. V.K. Shukla, R. Kumar, B.K. Singh, Evaluation of machining performance and multi criteria optimization of novel metal-Nimonic 80A using EDM, SN Appl. Sci. 3 (2021) 1–10 [CrossRef] [Google Scholar]
  130. B.P. Singh, J. Singh, J. Singh, M. Bhayana, D. Goyal, Experimental investigation of machining nimonic-80A alloy on wire EDM using response surface methodology, Met. Powder Rep. (2021) 1–9 [Google Scholar]
  131. R.V. Penmetsa, A.K. Ilanko, S. Rajesh, R.B.R. Chekuri, Experimental study and machining parameter optimization on powder-mixed EDM of Nimonic 901 using feed-forward backpropagation neural networks, Int. J. Adv. Manuf. Technol. (2022) [Google Scholar]
  132. D. Sundaresan, L. Marappan, K. Thangavelu, V. Venkatraman, Machinability of Nimonic alloy 90 in µ-titanium carbide mixed electrical discharge machining, Arab. J. Sci. Eng. 47 (2022) 15223–15243 [CrossRef] [Google Scholar]
  133. K. Satish, V.R. Srinivasan, C.P.S. Prakash, Optimization of machining parameters in machining Nimonic C-263 By WEDM process, J. Mines, Met. Fuels 70 (2022) 46 [Google Scholar]
  134. A.K. Singh, V. Sharma, Multi-objective optimization of grinding and vibration parameters of ultrasonic-assisted grinding with ultrasonically atomized novel green cutting fluid of Nimonic 80A, J. Brazilian Soc. Mech. Sci. Eng. 44 (2022) 1–20 [CrossRef] [Google Scholar]
  135. J. Airao, N. Khanna, A. Roy, H. Hegab, Comprehensive experimental analysis and sustainability assessment of machining Nimonic 90 using ultrasonic-assisted turning facility, Int. J. Adv. Manuf. Technol. 109 (2020) 1447–1462 [CrossRef] [Google Scholar]
  136. J. Airao, C.K. Nirala, L.N.L. de Lacalle, N. Khanna, Tool wear analysis during ultrasonic assisted turning of nimonic-90 under dry and wet conditions, Metals 11 (2021) [Google Scholar]
  137. J. Airao, C.K. Nirala, Finite element modeling and experimental validation of tool wear in hot-ultrasonic-assisted turning of Nimonic 90, J. Vib. Eng. Technol. (2022) 0123456789 [Google Scholar]
  138. M. Singh, S. Singh, Comparative capabilities of conventional and ultrasonic-assisted-electrical discharge machining of Nimonic alloy 75, J. Mater. Eng. Perform. 31 (2022) 4611–4623 [CrossRef] [Google Scholar]
  139. A.K. Singh, V. Sharma, A comparative appraisal of sustainable strategy in Ultrasonic Assisted Grinding of Nimonic 80A using novel green atomized cutting fluid, Sustain. Mater. Technol. 32 (2022) e00423 [Google Scholar]
  140. D.R. Unune, V.P. Singh, H.S. Mali, Experimental investigations of abrasive mixed electro discharge diamond grinding of Nimonic 80A, Mater. Manuf. Process. 31 (2016) 1718–1723 [CrossRef] [Google Scholar]
  141. D.R. Unune, M. Marani Barzani, S.S. Mohite, H.S. Mali, Fuzzy logic-based model for predicting material removal rate and average surface roughness of machined Nimonic 80A using abrasive-mixed electro-discharge diamond surface grinding, Neural Comput. Appl. 29 (2018) 647–662 [CrossRef] [Google Scholar]
  142. U.S. Yadav, V. Yadava, Modelling and optimisation of process parameters of electrical discharge diamond drilling of nimonic alloy – an aerospace material, Int. J. Ind. Syst. Eng. 29 (2018) 507–532 [Google Scholar]
  143. U.S. Yadav, V. Yadava, Experimental investigation on electrical discharge diamond drilling of nickel-based superalloy aerospace material, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231 (2017) 1160–1168 [CrossRef] [Google Scholar]
  144. K. Mishra, B.R. Sarkar, B. Bhattacharyya, Influence of different featured tools on machining accuracy in electrochemical milling, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2019) [Google Scholar]
  145. K. Mishra, S. Gupta, B. Bhattacharyya, Problematic areas in micro-electrochemical milling of HSTR alloys, Int. J. Adv. Manuf. Technol. 111 (2020) 1015–1036 [CrossRef] [Google Scholar]
  146. C.S. Shamli, P. Hariharan, N. Yuvaraj, E. Rajkeerthi, Study and evaluation of process parameter on Nimonic 75 alloy by Electrochemical micromachining, IOP Conf. Ser. Mater. Sci. Eng. 923 (2020) 1–11 [Google Scholar]
  147. C. Ezhilarasan, A. Velayudham, M. Nagaraj, R. Anburaj, Analysis of Hole Taper, recast layer and heat affected zone in pulsed O2 and N2 laser drilling of difficult-to-cut alloy Nimonic C-263, 3rd Int. Conf. Mater. Manuf. Eng. 390 (2018) 1–10 [Google Scholar]
  148. T. Sibalija, S. Petronic, D. Milovanovic, Experimental optimization of nimonic 263 laser cutting using a particle swarm approach, Metals (Basel) 9 (2019) [Google Scholar]
  149. A. Bagchi, M. Srivastava, R. Tripathi, S. Chattopadhyaya, Effect of different parameters on surface roughness and material removal rate in abrasive water jet cutting of Nimonic C263, Mater. Today Proc. 27 (2019) 2239–2242 [Google Scholar]
  150. S. Madhavarao, R.V. Penmetsa, C. Rama Bhadri Raju, H.T.R. Gottumukkala, Optimization of process variables in abrasive water jet machining of Nimonic C-263 super alloy using Taguchi method, in Proceedings of Fourth International Conference on Inventive Material Science Applications, Advances in Sustainability Science and Technology (2022), pp. 167–177 [CrossRef] [Google Scholar]
  151. M. Nagaraj, C. Ezilarasan, A. John Persin Kumar, A. Velayudham, A review of machining characteristics in mechanical drilling of super alloys, Int. J. Mech. Prod. Eng. Res. Dev. 8 (2018) 579–588 [Google Scholar]
  152. A.K. Singh, A. Kumar, V. Sharma, P. Kala, Sustainable techniques in grinding: State of the art review, J. Clean. Prod. 269 (2020) 121876 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.