Open Access
Manufacturing Rev.
Volume 10, 2023
Article Number 13
Number of page(s) 16
Published online 25 July 2023
  1. Z.J. Shi, M.G. Ma, Synthesis, structure, and applications of lignin-based carbon materials: a review, Sci. Adv Mater. 11 (2019) 18–32 [CrossRef] [Google Scholar]
  2. F. Mirderikvand, H.R. Shamlouei, B. Samiey, Design and computational evaluation of structural, electronic and optical properties of the oligomers of nC20 fullerene (n=1-6), Diamond Related Mater. 129 ( 2022) 109381 [Google Scholar]
  3. Y.H. Tzeng, C.C. Chang, Graphene induced diamond nucleation on tungsten, IEEE Open J. Nanotechnol. 1 (2020) 117–127 [CrossRef] [Google Scholar]
  4. M. Li, B.Y. Mu, Effect of different dimensional carbon materials on the properties and application of phase change materials: a review, Appl. Energy 242 (2019) 695–715 [CrossRef] [Google Scholar]
  5. J. Robertson, Amorphous carbon, Adv. Phys. 35 (1986) 317–374 [NASA ADS] [CrossRef] [Google Scholar]
  6. J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R 37 (2002) 129–281 [CrossRef] [Google Scholar]
  7. H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene, Nature 318 (1985) 162–163 [NASA ADS] [CrossRef] [Google Scholar]
  8. R.H. Baughman, H. Eckhardt, M. Kertesz, Structure-property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms, J. Chem. Phys. 87 (1987) 6687–6699 [CrossRef] [Google Scholar]
  9. S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58 [CrossRef] [Google Scholar]
  10. D. Kalpana, K. Karthikeyan, N.G. Renganathan, Y.S. Lee, Camphoric carbon nanobeads − a new electrode material for supercapacitors, Electrochem. Commun. 10 (2008) 977–979 [CrossRef] [Google Scholar]
  11. B.G. Kim, H. Sim, J. Park, C4 carbon allotropes with triple-bonds predicted by first-principles calculations, Solid State Commun. 169 (2013) 50–56 [CrossRef] [Google Scholar]
  12. Y.M. Liu, M.C. Lu, M. Zhang, First-principles study of a novel superhard sp(3) carbon allotrope, Phys. Lett. A 378 (2014) 3326–3330 [CrossRef] [Google Scholar]
  13. C. Cheng, Z.L. Lv, Y. Cheng, X.R. Chen, L.C. Cai, A possible superhard orthorhombic carbon, Diamond Related Mater. 43 (2014) 49–54 [CrossRef] [Google Scholar]
  14. S.L. Xu, L.D. Wang, Y.B. Liu, R. Yuan, X.C. Xu, Y.X. Cai, Lightweight superhard carbon allotropes obtained by transversely compressing the smallest CNTs under high pressure, Phys. Lett. A 379 (2015) 2116–2119 [CrossRef] [Google Scholar]
  15. F.Q. Wang, J.B. Yu, Q. Wang, Y. Kawazoe, P. Jena, Lattice thermal conductivity of penta-graphene, Carbon 105 (2016) 424–429 [CrossRef] [Google Scholar]
  16. G.K. Long, Y.C. Zhou, M.T. Jin, B. Kan, Y. Zhao, A. Gray-Weale, D.E. Jiang, Y.S. Chen, Q.C. Zhang, Theoretical investigation on two-dimensional non-traditional carbon materials employing three-membered ring and four-membered ring as building blocks, Carbon 95 (2015) 1033–1038 [CrossRef] [Google Scholar]
  17. M. Hu, Y.L. Pan, K. Luo, J.L. He, D.L. Yu, B. Xu, Three dimensional graphdiyne polymers with tunable band gaps, Carbon 91 (2015) 518–526 [CrossRef] [Google Scholar]
  18. X.M. Zhang, L. Wei, J. Tan, M.W. Zhao, Prediction of an ultrasoft graphene allotrope with Dirac cones, Carbon 105 (2016) 323–329 [CrossRef] [Google Scholar]
  19. Y.L. Pan, C.L. Xie, M. Xiong, M.D. Ma, L.Y. Liu, Z.H. Li, S.S. Zhang, G.Y. Gao, Z.S. Zhao, Y.J. Tian, B. Xu, J.L. He, A superhard sp(3) microporous carbon with direct bandgap, Chem. Phys. Lett. 689 (2017) 68–73 [CrossRef] [Google Scholar]
  20. J. Liu, T.S. Zhao, S.H. Zhang, Q. Wang, A new metallic carbon allotrope with high stability and potential for lithium ion battery anode material, Nano Energy 38 (2017) 263–270 [CrossRef] [Google Scholar]
  21. Z.L. Lv, H.L. Cui, H. Wang, X.H. Li, G.F. Ji, Theoretical study of the elasticity, ideal strength and thermal conductivity of a pure sp(2) carbon, Diamond Related Mater. 71 (2017) 73–78 [CrossRef] [Google Scholar]
  22. B. Ram, H. Mizuseki, Tetrahexcarbon: a two-dimensional allotrope of carbon, Carbon 137 (2018) 266–273 [CrossRef] [Google Scholar]
  23. Y.Q. Liu, X. Jiang, J. Fu, J.J. Zhao, New metallic carbon: three dimensionally carbon allotropes comprising ultrathin diamond nanostripes, Carbon 126 (2018) 601–610 [CrossRef] [Google Scholar]
  24. X. Wang, Z.H. Feng, J. Rong, Y.N. Zhang, Y. Zhong, J. Feng, X.H. Yu, Z.L. Zhan, Planar net-π: a new high-performance metallic carbon anode material for lithium-ion batteries, Carbon 142 (2019) 438–444 [CrossRef] [Google Scholar]
  25. Q. Wei, X.C. Yang, B. Wei, M.W. Hu, W. Tong, R.K. Yang, H.Y. Yan, M.G. Zhang, X.M. Zhu, R.H. Yao, Orthorhombic carbon o C48: a new superhard carbon allotrope, Solid State Commun. 319 (2020) 113994 [Google Scholar]
  26. G.X. Li, Y.L. Li, H.B. Liu, Y.B. Guo, Y.J. Li, D.B. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. 46 (2010) 3256–3258 [CrossRef] [Google Scholar]
  27. X. Gao, H.B. Liu, D. Wang, J. Zhang, Graphdiyne: synthesis, properties, and applications, Chem. Soc. Rev. 48 (2019) 908–936 [CrossRef] [Google Scholar]
  28. Y.P. Chen, Y.E. Xie, X.H. Yan, M.L. Cohen, S.B. Zhang, Topological carbon materials: a new perspective, Phys. Rep. 868 (2020) 1–32 [CrossRef] [MathSciNet] [Google Scholar]
  29. I.A. Khotina, N.S. Kushakova, V.G. Kharitonova, D.V. Kupriyanova, S.A. Babich, A.I. Kovalev, Second generation phenylene dendrimer, 1,3,5-tris[4-(3,5-diphenylphenyl)phenyl] benzene, as a precursor of a new carbon material, Mendeleev Commun. 31 (2021) 397–399 [CrossRef] [Google Scholar]
  30. L.X. Hou, X.P. Cui, B. Guan, S.Z. Wang, R.A. Li, Y.Q. Liu, D.B. Zhu, J. Zheng, Synthesis of a monolayer fullerene network, Nature 606 (2022) 507–509 [CrossRef] [Google Scholar]
  31. D.B. Altuntas, S. Aslan, Y. Akyol, V. Nevruzoglu, Synthesis of new carbon material produced from human hair and its evaluation as electrochemical supercapacitor, Energy Sources A 42 (2020) 2346–2356 [CrossRef] [Google Scholar]
  32. L. Wang, Solvated fullerenes, a new class of carbon materials suitable for high-pressure studies: a review, J. Phys. Chem. Solids 84 (2015) 85–95 [CrossRef] [Google Scholar]
  33. F.L. Yuan, W. Su, F. Gao, Monolayer 2D polymeric fullerene: a new member of the carbon material family, Chemistry 8 (2022) 2079–2081 [CrossRef] [Google Scholar]
  34. M. Deza, P.W. Fowler, M. Shtogrin, K. Vietze, Pentaheptite modifications of the graphite sheet, J. Chem. Inf. Comput. Sci. 40 (2000) 1325–1332 [CrossRef] [Google Scholar]
  35. Y.Z. Tan, S.Y. Xie, R.B. Huang, L.S. Zheng, The stabilization of fused-pentagon fullerene molecules, Nat. Chem. 1 (2009) 450–460 [CrossRef] [Google Scholar]
  36. S.H. Zhang, J. Zhou, Q. Wang, X.S. Chen, Y. Kawazoe, P. Jena, Penta-graphene: a new carbon allotrope, Proc. Natl. Acad. Sci. USA 112 (2015) 2372–2377 [CrossRef] [Google Scholar]
  37. A.Z. Wang, L.Y. Li, X.P. Wang, H.X. Bu, M.W. Zhao, Graphyne-based carbon allotropes with tunable properties: from Dirac fermion to semiconductor, Diamond Related Mater. 41 (2014) 65–72 [CrossRef] [Google Scholar]
  38. K. Luo, B. Liu, W.T. Hu, X. Dong, Y.B. Wang, Q. Huang, Y.F. Gao, L. Sun, Z.S. Zhao, Y.J. Wu, Y. Zhang, M.D. Ma, X.F. Zhou, J.L. He, D.L. Yu, Z.Y. Liu, B. Xu, Y.J. Tian, Coherent interfaces govern direct transformation from graphite to diamond, Nature 607 (2022) 486–491 [CrossRef] [Google Scholar]
  39. R.Z. Khaliullin, H. Eshet, T.D. Kuhne, J. Behler, M. Parrinello, Nucleation mechanism for the direct graphite-to-diamond phase transition, Nat Mater. 10 (2011) 693–697 [CrossRef] [Google Scholar]
  40. J.F. Li, R.Q. Zhang, New superhard carbon allotropes based on C20 fullerene, Carbon 63 (2013) 571–573 [CrossRef] [Google Scholar]
  41. F. Lavini, M. Rejhon, E. Riedo, Two-dimensional diamonds from sp(2)-to-sp(3) phase transitions, Nat. Rev. Mater. 7 (2022) 814–832 [CrossRef] [Google Scholar]
  42. Z.S. Zhao, B. Xu, Y.J. Tian, Recent advances in superhard materials, Annu. Rev. Mater. Res. 46 (2016) 383–406 [CrossRef] [Google Scholar]
  43. A. Ruiz-Puigdollers, P. Gamallo, DFT study of the role of N- and B-doping on structural, elastic and electronic properties of α-, β- and γ-graphyne, Carbon 114 (2017) 301–310 [CrossRef] [Google Scholar]
  44. H.Y. Niu, P.Y. Wei, Y. Sun, X.Q. Chen, C. Franchini, D.Z. Li, Y.Y. Li, Electronic, optical, and mechanical properties of superhard cold-compressed phases of carbon, Appl. Phys. Lett. 99 (2011) 031901 [Google Scholar]
  45. Y.Y. Zhang, S.Y. Chen, H.J. Xiang, X.G. Gong, Hybrid crystalline sp(2)-sp(3) carbon as a high-efficiency solar cell absorber, Carbon 109 (2016) 246–252 [CrossRef] [Google Scholar]
  46. S. Paulo, G. Stoica, W. Cambarau, E. Martinez-Ferrero, E. Palornares, Carbon quantum dots as new hole transport material for perovskite solar cells, Synth. Metals 222 (2016) 17–22 [CrossRef] [Google Scholar]
  47. X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications, Small 11 (2015) 1620–1636 [CrossRef] [Google Scholar]
  48. T.T. Zeng, Q.X. Chen, J.H. Guo, H.B. Wang, Fused pentagon carbon network: a new anode material for Li ion batteries, Chem. Phys. Lett. 745 (2020) 137225 [Google Scholar]
  49. H. Zhang, L.Y. Lin, N. Hu, D.Q. Yin, W.B. Zhu, S.S. Chen, S.L. Zhu, W.X. Yu, Y.H. Tian, Pillared carbon@tungsten decorated reduced graphene oxide film for pressure sensors with ultra-wide operation range in motion monitoring, Carbon 189 (2022) 430–442 [CrossRef] [Google Scholar]
  50. K.A.K. Azzou, A. Terbouche, C.A. Ramdane-Terbouche, H. Belkhalfa, K. Bachari, D. Hauchard, D. Mezaoui, Electrochemical performance of new hybrid activated carbon materials from binary and ternary Date-Olive pits for supercapacitor electrodes, J. Energy Stor. 47 (2022) 103559 [Google Scholar]
  51. X.Y. Liu, P.Y. Wang, C.P. Chang, Y.M. Chen, Y.Z. Sun, Y. Tang, P.Y. Wan, J.Q. Pan, A new hexagonal porous carbon nanoplate material derived from Al-based metal organic framework for high performance supercapacitors, Electrochim. Acta 371 (2021) 137826 [Google Scholar]
  52. M. Mandal, S. Subudhi, I. Alam, B. Subramanyam, S. Patra, J. Raiguru, S. Das, P. Mahanandia, Facile synthesis of new hybrid electrode material based on activated carbon/multiwalled carbon nanotubes@ZnFe2O4 for supercapacitor applications, Inorg. Chem. Commun. 123 (2021) 108332 [CrossRef] [Google Scholar]
  53. S.K. Zhang, H. Zhang, W.H. Xue, J. Cheng, W.F. Zhang, G.P. Cao, H.L. Zhao, Y.S. Yang, A layered-carbon/PbSO4 composite as a new additive for negative active material of lead-acid batteries, Electrochim. Acta 290 (2018) 46–54 [CrossRef] [Google Scholar]
  54. M. Blecua, E. Fatas, P. Ocon, B. Gonzalo, C. Merino, F. de la Fuente, J. Valenciano, F. Trinidad, Graphitized carbon nanofibers: new additive for the negative active material of lead acid batteries, Electrochim. Acta 257 (2017) 109–117 [CrossRef] [Google Scholar]
  55. H. Hosseini, M. Behbahani, M. Mahyari, H. Kazerooni, A. Bagheri, A. Shaabani, Ordered carbohydrate-derived porous carbons immobilized gold nanoparticles as a new electrode material for electrocatalytical oxidation and determination of nicotinamide adenine dinucleotide, Biosens. Bioelectr. 59 (2014) 412–417 [CrossRef] [Google Scholar]
  56. M. Nasibi, M.A. Golozar, G. Rashed, Nano zirconium oxide/carbon black as a new electrode material for electrochemical double layer capacitors, J. Power Sources 206 (2012) 108–110 [CrossRef] [Google Scholar]
  57. A.D. Becke, K.E. Edgecombe, A simple measure of electron localization in atomic and molecular-systems, J. Chem. Phys. 92 (1990) 5397–5403 [CrossRef] [Google Scholar]
  58. J.X. Wu, Z.Y. Pan, Y. Zhang, B.J. Wang, H.S. Peng, The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries, J. Mater. Chem. A 6 (2018) 12932–12944 [CrossRef] [Google Scholar]
  59. S.F. Huang, Z.P. Li, B. Wang, J.J. Zhang, Z.Q. Peng, R.J. Qi, J. Wang, Y.F. Zhao, N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance Lithium/Sodium storage, Adv. Funct. Mater. 28 (2018) 1706294 [Google Scholar]
  60. M. Chen, W. Liu, Y.X. Du, Y.P. Cui, W.T. Feng, J.N. Zhou, X. Gao, T.Q. Wang, S. Liu, Y.C. Jin, “Plains-Hills”: a new model to design biomass-derived carbon electrode materials for high-performance potassium ion hybrid supercapacitors, ACS Sustain. Chem. Eng. 9 (2021) 3931–3941 [CrossRef] [Google Scholar]
  61. S. Han, D.Q. Wu, S. Li, F. Zhang, X.L. Feng, Porous graphene materials for advanced electrochemical energy storage and conversion devices, Adv. Mater. 26 (2014) 849–864 [CrossRef] [Google Scholar]
  62. N.H. Abu-Hamdeh, A. Karimipour, R.I. Hatamleh, S.M. Sajadi, Improve the rheological and thermal performances of the antifreeze liquids for cooling the batteries and radiators in automobiles via provide a new hybrid material composed from carbon nanotubes in ethylene glycol/propylene glycol, J. Energy Storage 52 (2022) 104982 [CrossRef] [Google Scholar]
  63. C. Ampelli, S. Perathoner, G. Centi, Carbon-based catalysts: opening new scenario to develop next-generation nano-engineered catalytic materials, Chin. J. Catal. 35 (2014) 783–791 [CrossRef] [Google Scholar]
  64. S.M. Woodley, P.D. Battle, J.D. Gale, C.R.A. Catlow, The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation, Phys. Chem. Chem. Phys. 1 (1999) 2535–2542 [NASA ADS] [CrossRef] [Google Scholar]
  65. Z. Allahyari, A.R. Oganov, Coevolutionary search for optimal materials in the space of all possible compounds, Npj Comput. Mater. 6 (2020) 55 [Google Scholar]
  66. M. Martinez-Canales, C.J. Pickard, R.J. Needs, Thermodynamically stable phases of carbon at multiterapascal pressures, Phys. Rev Lett. 108 (2012) 045704 [CrossRef] [Google Scholar]
  67. Y.C. Wang, J.A. Lv, L. Zhu, Y.M. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82 (2010) 094116 [Google Scholar]
  68. A.R. Oganov, C.W. Glass, Crystal structure prediction using ab initio evolutionary techniques: principles and applications, J. Chem. Phys. 124 (2006) [CrossRef] [Google Scholar]
  69. A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu, New developments in evolutionary structure prediction algorithm USPEX, Comput. Phys. Commun. 184 (2013) 1172–1182 [CrossRef] [Google Scholar]
  70. C.J. Pickard, R.J. Needs, Ab initio random structure searching, J. Phys. Condens. Matter. 23 (2011) 053201 [CrossRef] [Google Scholar]
  71. Y.Y. Zhang, W.G. Gao, S.Y. Chen, H.J. Xiang, X.G. Gong, Inverse design of materials by multi-objective differential evolution, Comput. Mater. Sci. 98 (2015) 51–55 [CrossRef] [Google Scholar]
  72. G. Schusteritsch, C.J. Pickard, Predicting interface structures: from SrTiO3 to graphene, Phys. Rev. B 90 (2014) 035424 [CrossRef] [Google Scholar]
  73. Q.T. Fan, L.H. Yan, M.W. Tripp, O. Krejci, S. Dimosthenous, S.R. Kachel, M.Y. Chen, A.S. Foster, U. Koert, P. Liljeroth, J.M. Gottfried, Biphenylene network: a nonbenzenoid carbon allotrope, Science 372 (2021) 852–856 [CrossRef] [Google Scholar]
  74. C.Y. He, C.X. Zhang, H.P. Xiao, L.J. Meng, J.X. Zhong, New candidate for the simple cubic carbon sample shock-synthesized by compression of the mixture of carbon black and tetracyanoethylene, Carbon 112 (2017) 91–96 [CrossRef] [Google Scholar]
  75. J.F. Miao, X.X. Dong, S.S. Wang, Y.L. Xu, Z.Z. Zhai, L.H. Zhang, B. Ren, Z.F. Liu, New method for N-doped micro/meso porous carbon as electrode material for high-performance supercapacitors, Micropor. Mesopor. Mater. 320 (2021) 111085 [Google Scholar]
  76. Y.J. Zhang, H.L. Chen, S.J. Wang, W.L. Shao, Q. Wu, X. Zhao, F.G. Kong, A new lamellar larch-based carbon material: fabrication, electrochemical characterization and supercapacitor applications, Ind. Crops Prod. 148 (2020) 112306 [Google Scholar]
  77. B. Babic, M. Kokunesoski, M. Miljkovic, B. Matovic, J. Gulicovski, M. Stojmenovic, D. Bucevac, New mesoporous carbon materials synthesized by a templating procedure, Ceram. Int. 39 (2013) 4035–4043 [CrossRef] [Google Scholar]
  78. A. Dobashi, J. Maruyama, Y.H. Shen, M. Nandi, H. Uyama, A8tivated carbon monoliths derived from bacterial cellulose/polyacrylonitrile composite as new generation electrode materials in EDLC, Carbohydr. Polym. 200 (2018) 381–390 [CrossRef] [Google Scholar]
  79. C.I. Fort, L.C. Cotet, V. Danciu, G.L. Turdean, I.C. Popescu, Iron doped carbon aerogel − new electrode material for electrocatalytic reduction of H2O2, Mater. Chem. Phys. 138 (2013) 893–898 [CrossRef] [Google Scholar]
  80. A. Afkhami, T. Madrakian, A. Shirzadmehr, M. Tabatabaee, H. Bagheri, New Schiff base-carbon nanotube-nanosilica-ionic liquid as a high performance sensing material of a potentiometric sensor for nanomolar determination of cerium(III) ions, Sens. Actuat. B 174 (2012) 237–244 [CrossRef] [Google Scholar]
  81. S.J. Han, S. Kim, H. Lim, W.Y. Choi, H. Park, J. Yoon, T. Hyeon, New nanoporous carbon materials with high adsorption capacity and rapid adsorption kinetics for removing humic acids, Micropor. Mesopor. Mater. 58 (2003) 131–135 [CrossRef] [Google Scholar]
  82. R. Gadiou, A. Didion, R.I. Gearba, D.A. Ivanov, I. Czekaj, R. Kotz, C. Vix-Guterl, Synthesis and properties of new nitrogen-doped nanostructured carbon materials obtained by templating of mesoporous silicas with aminosugars, J. Phys. Chem. Solids 69 (2008) 1808–1814 [CrossRef] [Google Scholar]
  83. Y.H. Wen, G.P. Cao, Y.S. Yang, Studies on nanoporous glassy carbon as a new electrochemical capacitor material, J. Power Sources 148 (2005) 121–128 [CrossRef] [Google Scholar]
  84. X.B. Liu, F.X. Chang, L. Xu, Y. Yang, Y.L. He, Z.M. Liu, Synthesis and characterization of a new nanoporous carbon material with a bimodal pore system, Carbon 44 (2006) 184–187 [CrossRef] [Google Scholar]
  85. A.L. Cazetta, L. Spessato, S.A.R. Melo, K.C. Bedin, T. Zhang, T. Asefa, T.L. Silva, V.C. Almeida, Sugarcane vinasse-derived nanoporous N-S-doped carbon material decorated with Co: a new and efficient multifunctional electrocatalyst, Int. J. Hydrogen Energy 45 (2020) 9669–9682 [CrossRef] [Google Scholar]
  86. S.J. Hou, M. Wang, X.T. Xu, Y.D. Li, Y.J. Li, T. Lu, L.K. Pan, Nitrogen-doped carbon spheres: a new high-energy-density and long life pseudo-capacitive electrode material for electrochemical flow capacitor, J. Colloid Interface Sci. 491 (2017) 161–166 [CrossRef] [Google Scholar]
  87. T.F. Liu, K. Wang, S.Q. Song, A. Brouzgou, P. Tsiakaras, Y. Wang, New electro-fenton gas diffusion cathode based on Nitrogen-doped graphene@Carbon nanotube composite materials, Electrochim. Acta 194 (2016) 228–238 [CrossRef] [Google Scholar]
  88. T.K.M. Prashanthakumar, S.K.A. Kumar, S.K. Sahoo, A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials, J. Environ. Chem. Eng. 6 (2018) 1434–1442 [CrossRef] [Google Scholar]
  89. L.C.A. Oliveira, M.C. Guerreiro, M. Goncalves, D.Q.L. Oliveira, L.C.M. Costa, Preparation of activated carbon from leather waste: a new material containing small particle of chromium oxide, Mater. Lett. 62 (2008) 3710–3712 [CrossRef] [Google Scholar]
  90. A.M.M. Vargas, A.L. Cazetta, C.A. Garcia, J.C.G. Moraes, E.M. Nogami, E. Lenzi, W.F. Costa, V.C. Almeida, Preparation and characterization of activated carbon from a new raw lignocellulosic material Flamboyant (Delonix regia) pods, J. Environ. Manag. 92 (2011) 178–184 [CrossRef] [Google Scholar]
  91. R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B 103 (1999) 7743–7746 [CrossRef] [Google Scholar]
  92. S.J. Han, T. Hyeon, Simple silica-particle template synthesis of mesoporous carbons, Chem. Commun. (1999)19 1955–1956 [CrossRef] [Google Scholar]
  93. Y.D. Xia, R. Mokaya, Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method, Adv. Mater. 16 (2004) 1553–1558 [CrossRef] [Google Scholar]
  94. A. Vinu, K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg, Y. Bando, Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride, Adv. Mater. 17 (2005) 1648–1652 [CrossRef] [Google Scholar]
  95. A.H. Lu, A. Kiefer, W. Schmidt, F. Schuth, Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures, Chem. Mater. 16 (2004) 100–103 [CrossRef] [Google Scholar]
  96. C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Beguin, Electrochemical energy storage in ordered porous carbon materials, Carbon 43 (2005) 1293–1302 [CrossRef] [Google Scholar]
  97. P.X. Hou, H. Orikasa, T. Yamazaki, K. Matsuoka, A. Tomita, N. Setoyama, Y. Fukushima, T. Kyotani, Synthesis of nitrogen-containing microporous carbon with a highly ordered structure and effect of nitrogen doping on H2O adsorption, Chem. Mater. 17 (2005) 5187–5193 [CrossRef] [Google Scholar]
  98. H. Kim, J.C. Jung, D.R. Park, S.H. Baeck, I.K. Song, Preparation of H5PMo10V2O40 (PMo10V2) catalyst immobilized on nitrogen-containing mesoporous carbon (N-MC) and its application to the methacrolein oxidation, Appl. Catal. A 320 (2007) 159–165 [CrossRef] [Google Scholar]
  99. Z.X. Yang, Y.D. Xia, X.Z. Sun, R. Mokaya, Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping, J. Phys. Chem. B 110 (2006) 18424–18431 [CrossRef] [Google Scholar]
  100. H.Y. Li, Z.X. Zhang, J. Ding, Y. Xu, G.R. Chen, J.L. Liu, L. Zhao, N. Huang, Z.Y. He, Y. Li, L. Ding, Diamond-like carbon structure-doped carbon dots: a new class of self-quenching-resistant solid-state fluorescence materials toward light-emitting diodes, Carbon 149 (2019) 342–349 [CrossRef] [Google Scholar]
  101. X. Gao, W. Liu, T.Q. Wang, J.R. Dai, Y.Y. Pan, Y.X. Du, Y.P. Cui, H.G. Fan, S. Liu, Y.C. Jin, Cyano groups: new active sites of porous carbon materials achieving a superior K-ion storage, Carbon 184 (2021) 156–166 [CrossRef] [Google Scholar]
  102. P. Russo, M. Xiao, N.Y. Zhou, Carbon nanowalls: a new material for resistive switching memory devices, Carbon 120 (2017) 54–62 [CrossRef] [Google Scholar]
  103. G. Compagnini, M. Sinatra, P. Russo, G.C. Messina, O. Puglisi, S. Scalese, Deposition of few layer graphene nanowalls at the electrodes during electric field-assisted laser ablation of carbon in water, Carbon 50 (2012) 2362–2365 [CrossRef] [Google Scholar]
  104. I.A. Khan, S. Ullah, F. Nasim, M. Choucair, M.A. Nadeem, A. Iqbal, A. Badshah, M.A. Nadeem, Cr2O3-carbon composite as a new support material for efficient methanol electrooxidation, Mater. Res. Bull. 77 (2016) 221–227 [CrossRef] [Google Scholar]
  105. W.F. Deng, X.Y. Yuan, Y.M. Tan, M. Ma, Q.J. Xie, Three-dimensional graphene-like carbon frameworks as a new electrode material for electrochemical determination of small biomolecules, Biosens. Bioelectr. 85 (2016) 618–624 [CrossRef] [Google Scholar]
  106. S.J. Yuan, X.H. Dai, Facile synthesis of sewage sludge-derived in-situ multi-doped nanoporous carbon material for electrocatalytic oxygen reduction, Sci. Rep. 6 (2016) [Google Scholar]
  107. X.Y. Li, D. Han, M.Y. Zhang, B. Li, Z.B. Wang, Z.Q. Gong, P.K. Liu, Y.K. Zhang, X.H. Yang, Removal of toxic dyes from aqueous solution using new activated carbon materials developed from oil sludge waste, Colloids Surf. A 578 (2019) [Google Scholar]
  108. Y. Chen, C. Xu, J. Zhao, J.D. Huang, H. Xu, G.J. Gou, Creating a new electrode material of supercapacitors from the waste multi-walled carbon nanotubes, Electrochim. Acta 330 (2020) [Google Scholar]
  109. L. Zhu, H. Liu, C. Picard, G. Zhou, Y. Ma, Reaction of xenon with iron and nickel are predicted in the Earth's inner core, Nat. Chem. 6 (2014) 644–648 [CrossRef] [Google Scholar]
  110. C. Chen, D. Yin, T. Kato, T. Taniguchi, K. Watanabe, X. Ma, H. Ye, Y. Ikuhara, Stabilizing the metastable superhard materials wurtzite boron nitride by three-dimensional networks of planar defects, Proc. Natl. Acad. Sci. USA 116 (2019) 11181–11186 [CrossRef] [Google Scholar]
  111. K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, G. Ceder, Lithium diffusion in graphitic carbon, J. Phys. Chem. Lett. 1 (2010) 1176–1180 [CrossRef] [Google Scholar]
  112. C. Uthaisar, V. Barone, Edge effects on the characteristics of Li diffusion in graphene, Nano Lett. 10 (2010) 2838–2842 [CrossRef] [Google Scholar]
  113. K.H. Jiang, X.H. Zhang, J.L. Huang, S.Y. Wang, J.H. Chen, Porous hollow tubular carbon materials based on zeolitic imidazolate framework-8 derived from ZnO nanorods as new enzyme immobilizing matrix for high-performance bioanode of glucose/O2 biofuel cells, J. Electroanal. Chem. 796 (2017) 88–95 [CrossRef] [Google Scholar]
  114. S.H. Lee, V.E. Pukha, V.E. Vinogradov, N. Kakati, S.H. Jee, S.B. Cho, Y.S. Yoon, Nanocomposite-carbon coated at low-temperature: a new coating material for metallic bipolar plates of polymer electrolyte membrane fuel cells, Int. J. Hydrogen Energy 38 (2013) 14284–14294 [CrossRef] [Google Scholar]
  115. Z.G. Zhao, T.T. Yu, Y.C. Miao, X.Y. Zhao, Chloride ion-doped polyaniline/carbon nanotube nanocomposite materials as new cathodes for chloride ion battery, Electrochim. Acta 270 (2018) 30–36 [CrossRef] [Google Scholar]
  116. D. Yan, X.T. Xu, T. Lu, B.W. Hu, D.H.C. Chua, L.K. Pan, Reduced graphene oxide/carbon nanotubes sponge: a new high capacity and long life anode material for sodium-ion batteries, J. Power Sources 316 (2016) 132–138 [CrossRef] [Google Scholar]
  117. I. Shah, R. Adnan, W.S.W. Ngah, N. Mohamed, Y.H. Taufiq-Yap, A new insight to the physical interpretation of activated carbon and iron doped carbon material: sorption affinity towards organic dye, Bioresour. Technol. 160 (2014) 52–56 [CrossRef] [Google Scholar]
  118. B.K. Ostafiychuk, N.Y. Ivanichok, S.V.S. Sklepova, O.M. Ivanichok, V.O. Kotsyubynsky, P.I. Kolkovskyy, I.M. Budzulyak, R.P. Lisovskiy, Influence of plant biomass activation conditions on the structure and electrochemical properties of nanoporous carbon material, Mater. Today Proc. 62 (2021) 5712–5716 [Google Scholar]
  119. L.Y. Pang, B. Zou, Y.C. Zou, X. Han, L.Y. Cao, W. Wang, Y.P. Guo, A new route for the fabrication of corn starch-based porous carbon as electrochemical supercapacitor electrode material, Colloids Surf. A 504 (2016) 26–33 [CrossRef] [Google Scholar]
  120. Y.T. Li, S. Zhang, H.H. Song, X.H. Chen, J.S. Zhou, S. Hong, New insight into the heteroatom-doped carbon as the electrode material for supercapacitois, Electrochim. Acta 180 (2015) 879–886 [CrossRef] [Google Scholar]
  121. G.W. Sun, W.H. Song, X.J. Liu, W.M. Qiao, D.H. Long, L.C. Ling, New concept of in situ carbide-derived carbon/xerogel nanocomposite materials for electrochemical capacitor, Mater. Lett. 65 (2011) 1392–1395 [CrossRef] [Google Scholar]
  122. M. Eguilaz, F. Gutierrez, J.M. Gonzalez-Dominguez, M.T. Martinez, G. Rivas, Single-walled carbon nanotubes covalently functionalized with polytyrosine: a new material for the development of NADH-based biosensors, Biosens. Bioelectr. 86 (2016) 308–314 [CrossRef] [Google Scholar]
  123. L. Zhang, J. Zhang, 3D hierarchical bayberry-like Ni@carbon hollow nanosphere/rGO hybrid as a new interesting electrode material for simultaneous detection of small biomolecules, Talanta 178 (2018) 608–615 [CrossRef] [Google Scholar]
  124. H.M. Jiang, S.Q. Wang, W.F. Deng, Y.M. Zhang, Y.M. Tan, Q.J. Xie, M. Ma, Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol, Talanta 164 (2017) 300–306 [CrossRef] [Google Scholar]
  125. N.K. Amin, Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith, Desalination 223 (2008) 152–161 [CrossRef] [Google Scholar]
  126. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol. 97 (2006) 1061–1085 [CrossRef] [Google Scholar]
  127. B. Ren, J. Miao, S. Wang, Y. Xu, Z. Zhai, X. Dong, Z. Liu, Nitrogen-doped graphene-like carbon material derived via a simple, cost-effective method as an excellent adsorbent for methylene blue adsorption, E3S Web Conf. 194 (2020) [Google Scholar]
  128. S. Fekete, D.S. Jensen, J. Zukowski, D. Guillarme, Evaluation of a new wide-pore superficially porous material with carbon core and nanodiamond-polymer shell for the separation of proteins, J. Chromatogr A 1414 (2015) 51–59 [CrossRef] [Google Scholar]
  129. L.A. Zemskova, A.P. Artemyanov, A.V. Voit, D. Kh. Shlyk, New composite materials based on activated carbon fibers with specific adsorption and catalytic properties, Mater. Today: Proc. 5 (2018) 25997–26001 [CrossRef] [Google Scholar]
  130. M. Ouellet, J. Goyette, J.S. Xiao, A new approach to optimize the performance of a hydrogen reservoir using activated carbon as the storing material, Int. J. Hydrogen Energy 42 (2017) 24229–24236 [CrossRef] [Google Scholar]
  131. Z.J. Liu, Q.G. Guo, Y. Song, J.L. Shi, J.R. Song, L. Liu, Carbon seal materials with superior mechanical properties and fine-grained structure fabricated by a new process, Mater. Lett. 61 (2007) 1816–1819 [CrossRef] [Google Scholar]
  132. M.E. Kilic, K.R. Lee, Four-penta-graphenes: novel two-dimensional fenestrane-based auxetic nanocarbon allotropes for nanoelectronics and optoelectronics, Carbon 195 (2022) 154–164 [CrossRef] [Google Scholar]
  133. Z.S. Bagheri, I. El Sawi, E.H. Schemitsch, R. Zdero, H. Bougherara, Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications, J. Mech. Behav. Biomed. Mater. 20 (2013) 398–406 [CrossRef] [Google Scholar]
  134. L. Wang, Y. Liu, H. Chen, M. Wang, Modification methods of diamond like carbon coating and the performance in machining applications: a review, Coatings 12 (2022) [Google Scholar]
  135. G.Q. Zhang, H.C. Liu, Y. Chen, H.S. Qin, Y.L. Liu, Strength criterion of graphene GBs combining discrete bond strength and varied bond stretch, J. Mech. Phys. Solids 169 (2022) [Google Scholar]
  136. R.G.F. Goncalves, M.V.B. Pinheiro, R.G. Lacerda, A.S. Ferlauto, L.O. Ladeira, K. Krambrock, A.S. Leal, G.A. Viana, F.C. Marques, New material for low-dose brachytherapy seeds Xe-doped amorphous carbon films with post-growth neutron activated 125I, Appl. Radiat. Isotopes 69 (2011) 118–121 [CrossRef] [Google Scholar]
  137. C. Ampelli, S. Perathoner, G. Centi, Carbon-based catalysts: opening new scenario to develop next-generation nano-engineered catalytic materials, Chin. J. Catal. 35 (2014) 783–791 [CrossRef] [Google Scholar]
  138. C. Fitch, K. Morsi, Effect of shortening carbon nanotubes on carbon nanotube dispersion, damage and mechanical behavior of carbon nanotube-metal matrix nanocomposites, Metallogr. Microstruct. Anal. 10 (2021) 167–173 [CrossRef] [Google Scholar]
  139. M.M. Budnik, E.W. Johnson, A carbon nanotube capacitor, 2009 IEEE Nanotechnology Materials and Devices Conference (2009) pp. 233–236 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.