Open Access
Review
Issue
Manufacturing Rev.
Volume 10, 2023
Article Number 12
Number of page(s) 22
DOI https://doi.org/10.1051/mfreview/2023008
Published online 27 June 2023
  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303 [CrossRef] [Google Scholar]
  2. A. Takeuchi, T. Wada, H. Kato, Solid solutions with bcc, hcp, and fcc Structures formed in a composition line in multicomponent Ir Rh Ru W Mo system, Mater. Trans. 60 (2019) 2267–2276 [CrossRef] [Google Scholar]
  3. J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, J.M. Luo, Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction, J. Mater. Sci. Technol. 79 (2021) 171–177 [CrossRef] [Google Scholar]
  4. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218 [CrossRef] [Google Scholar]
  5. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18 (2010) 1758–1765 [CrossRef] [Google Scholar]
  6. M.C. Gao, Progress in high-entropy alloys, JOM 66 (2014) 1964–1965 [CrossRef] [Google Scholar]
  7. M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett. 2 (2014) 107–123 [CrossRef] [Google Scholar]
  8. S. Praveen, J.W. Bae, P. Asghari-Rad, J.M. Park, H.S. Kim, Ultra-high tensile strength nanocrystalline CoCrNi equi-atomic medium entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A 735 (2018) 394–397 [CrossRef] [Google Scholar]
  9. C.L. Chen, Sutrisna, Study of NiFeCoCr medium entropy alloy as a binder phase on W-Mo heavy tungsten alloy by secondary ball milling, Intermetallics 138 (2021) 107320 [CrossRef] [Google Scholar]
  10. Y.S. Lee, R.J. Cava, Superconductivity in high and medium entropy alloys based on MoReRu, Physica C 566 (2019) 1353520 [CrossRef] [Google Scholar]
  11. S. Uporov, E. Sterkhov, I. Balyakin, Magnetocaloric effect in ScGdHo medium-entropy alloy, J. Supercond. Nov. Magn. (2022) 1539–1545 [CrossRef] [Google Scholar]
  12. M.O. Bodunrin, B.A. Obadele, L.H. Chown, P.A. Olubambi, Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy, IOP Conf. Ser. Mater. Sci. Eng. 272 (2017) [Google Scholar]
  13. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511 [CrossRef] [Google Scholar]
  14. Q. Li, X. Bao, S. Zhao, Y. Zhu, Y. Lan, X. Feng, Q. Zhang, The influence of AlFeNiCrCoTi high-entropy alloy on microstructure, mechanical properties and tribological behaviors of aluminum matrix composites, Int. J. Metalcast. 15 (2021) 281–291 [CrossRef] [Google Scholar]
  15. M. Tsai, J. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett. 2 (2014) 107–123 [CrossRef] [Google Scholar]
  16. O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, Development and exploration of refractory high entropy alloys − a review, J. Mater. Res. 33 (2018) 3092–3128 [CrossRef] [Google Scholar]
  17. S. Praveen, H.S. Kim, High-entropy alloys: potential candidates for high-temperature applications − an overview, Adv. Eng. Mater. 1700645 (2018) 1–22 [Google Scholar]
  18. L. Raman, A. Anupam, G. Karthick, C.C. Berndt, A.S.M. Ang, S.V.S. Narayana Murty, D. Fabijanic, B.S. Murty, R.S. Kottada, Strengthening mechanisms in CrMoNbTiW refractory high entropy alloy, Mater. Sci. Eng. A 819 (2021) 1–10 [Google Scholar]
  19. S.A. Alvi, Synthesis and Characterisation of High Entropy Alloy and Coating (Lulea University of Technology, Sweden, 2019) [Google Scholar]
  20. V. Bhardwaj, Q. Zhou, F. Zhang, W. Han, Y. Du, K. Hua, H. Wang, Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys, Tribol. Int. 160 (2021) 1–11 [Google Scholar]
  21. M. Sahlberg, D. Karlsson, C. Zlotea, U. Jansson, Superior hydrogen storage in high entropy alloys, Sci. Rep. 6 (2016) 1–6 [CrossRef] [Google Scholar]
  22. C. Zhang, A. Song, Y. Yuan, Y. Wu, P. Zhang, Z. Lu, X. Song, Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy, Int. J. Hydrogen Energy 45 (2020) 5367–5374 [CrossRef] [Google Scholar]
  23. R. Floriano, G. Zepon, K. Edalati, G.L.B.G. Fontana, A. Mohammadi, Z. Ma, H.W. Li, R.J. Contieri, Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations, Int. J. Hydrogen Energy 45 (2020) 33759–33770 [CrossRef] [Google Scholar]
  24. J. Montero, G. Ek, L. Laversenne, V. Nassif, G. Zepon, M. Sahlberg, C. Zlotea, Hydrogen storage properties of the refractory Ti-V-Zr-Nb-Ta multi-principal element alloy, J. Alloys Compd. 835 (2020) 155376 [CrossRef] [Google Scholar]
  25. H. Li, L. Zhao, Y. Yang, H. Zong, X. Ding, Improving radiation-tolerance of bcc multi-principal element alloys by tailoring compositional heterogeneities, J. Nucl. Materi. 555 (2021) 1–10 [Google Scholar]
  26. T. Li, L. Yiping, C. Zhiqiang, W. Tongmin, L. Tingju, Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials, Acta Metall. Sin. 57 (2021) 42 [Google Scholar]
  27. I.A. Ivanov, A. Ryskulov, A. Kurakhmedov, A. Kozlovskiy, D. Shlimas, M.V. Zdorovets, V.V. Uglov, S.V. Zlotski, J. Ke, Radiation swelling and hardness of high-entropy alloys based on the TiTaNbV system irradiated with krypton ions, J. Mater. Sci.: Mater. Electr. 32 (2021) 27260–27267 [CrossRef] [Google Scholar]
  28. X. Shang, S. Bo, Y. Guo, Q. Liu, ZrC reinforced refractory-high-entropy-alloy coatings: compositional design, synthesis, interstitials, and microstructure evolution effects on wear, corrosion and oxidation behaviors, Appl. Surf. Sci. 564 (2021) 1–11 [Google Scholar]
  29. S.B. Hung, C.J. Wang, Y.Y. Chen, J.W. Lee, C.L. Li, Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings, Surf. Coat Technol. 375 (2019) 802–809 [CrossRef] [Google Scholar]
  30. S.K. Bachani, C.J. Wang, B.S. Lou, L.C. Chang, J.W. Lee, Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics, J. Alloys Compd. 873 (2021) 1–15 [Google Scholar]
  31. A. Ostovari, J. Pasandideh, A. Abdollahzadeh, N.A. Shaburova, E. Trofimov, On the application of NbTaTiVW refractory high entropy alloy particles in the manufacturing process of WC based matrix body drill bits, Int. J. Refract. Metals Hard Mater. 99 (2021) 1–7 [Google Scholar]
  32. R.R. Eleti, T. Bhattacharjee, A. Shibata, N. Tsuji, Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy, Acta Mater. 171 (2019) 132–145 [CrossRef] [Google Scholar]
  33. F.J. Humphreys, M. Hatherly, Hot deformation and dynamic restoration, in: Recrystallization and Related Annealing Phenomena, edited by M. Hatherly and F.J. Humphreys, 2nd edn. ( Elsevier, Oxford, 2004), pp. 415–451 [CrossRef] [Google Scholar]
  34. R.R. Eleti, Deformation Mechanisms and Microstructure Evolution in HfNbTaTiZr High Entropy Alloy during Thermo-mechanical Processing at Elevated Temperatures (Kyoto University, Japan, 2019) [Google Scholar]
  35. C.M. Sellars, W.J.M. Tegart, Hot workability, Int. Metall. Rev. 17 (1972) 1–24 [CrossRef] [Google Scholar]
  36. T. Sakai, J.J. Jonas, Plastic deformation: role of recovery and recrystallization, Mater. Sci. Technol. (2001) 7079–7084 [Google Scholar]
  37. X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, M. He, Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation, Mater. Des. 57 (2014) 568–577 [CrossRef] [Google Scholar]
  38. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Current issues in recrystallization: a review, Mate. Sci. Eng. A (1997) 219–274 [Google Scholar]
  39. M. lei Hu, W. dong Song, D. bo Duan, Y. Wu, Dynamic behavior and microstructure characterization of TaNbHfZrTi high-entropy alloy at a wide range of strain rates and temperatures, Int. J. Mech. Sci. 182 (2020) 105738 [Google Scholar]
  40. F. Dong, Y. Yuan, W. Li, Y. Zhang, P.K. Liaw, X. Yuan, H. Huang, hot deformation behavior and processing maps of an equiatomic MoNbHfZrTi refractory high entropy alloy, Intermetallics (Barking) 126 (2020) 1–10 [Google Scholar]
  41. J. Pang, H.H. Zhang, L. Zhang, Z. Zhu, H. Fu, H. Li, A. Wang, Z. Li, H.H. Zhang, A ductile Nb40Ti25Al15V10Ta5Hf3W2 refractory high entropy alloy with high specific strength for high-temperature applications, Mater. Sci. Eng. A 831 (2022) 1–9 [Google Scholar]
  42. Z. Savaedi, R. Motallebi, H. Mirzadeh, A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys, J. Alloys Compd. 903 (2022) 1–21 [Google Scholar]
  43. H.Y. Diao, R. Feng, K.A. Dahmen, P.K. Liaw, Fundamental deformation behavior in high-entropy alloys: an overview, Curr. Opin. Solid State Mater. Sci. 21 (2017) 252–266 [Google Scholar]
  44. J. Brechtl, S. Chen, C. Lee, Y. Shi, R. Feng, X. Xie, D. Hamblin, A.M. Coleman, B. Straka, H. Shortt, R.J. Spurling, P.K. Liaw, A review of the serrated-flow phenomenon and its role in the deformation behavior of high-entropy alloys, Metals (Basel) 10 (2020) 1–72 [Google Scholar]
  45. A.H. Chokshi, High temperature deformation in fine grained high entropy alloys, Mater. Chem. Phys. 210 (2018) 152–161 [CrossRef] [Google Scholar]
  46. E.P. George, W.A. Curtin, C.C. Tasan, High entropy alloys: a focused review of mechanical properties and deformation mechanisms, Acta Mater. 188 (2020) 435–474 [CrossRef] [Google Scholar]
  47. E.P. George, W.A. Curtin, C.C. Tasan, High entropy alloys: a focused review of mechanical properties and deformation mechanisms, Acta Mater. 188 (2020) 435–474 [CrossRef] [Google Scholar]
  48. E.S. Vieira, J.A.N.F. Gomes, A comparison of scopus and web of science for a typical university, Scientometrics 81 (2009) 587–600 [CrossRef] [Google Scholar]
  49. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W refractory high entropy alloys, Intermetallics 19 (2011) 698–706 [CrossRef] [Google Scholar]
  50. O.N. Senkov, J.M. Scott, S.V Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci. 47 (2012) 4062–4074 [CrossRef] [Google Scholar]
  51. C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics (Barking) 62 (2015) 76–83 [CrossRef] [Google Scholar]
  52. O.N. Senkov, C.F. Woodward, Microstructure and properties of a refractory NbCrMo0. 5Ta0.5TiZr alloy, Mater. Sci. Eng. A 529 (2011) 311–320 [CrossRef] [Google Scholar]
  53. O.N. Senkov, C. Woodward, D.B. Miracle, Microstructure and properties of aluminum-containing refractory high-entropy alloys, JOM 66 (2014) 2030–2042 [CrossRef] [Google Scholar]
  54. N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, Hot deformation characteristics and dynamic recrystallization of the MoNbHfZrTi refractory high-entropy alloy, Mater. Sci. Eng. A 651 (2016) 698–707 [CrossRef] [Google Scholar]
  55. Y. Zhang, Y. Liu, Y. Li, X. Chen, H. Zhang, Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite, Mater. Lett. 174 (2016) 82–85 [CrossRef] [Google Scholar]
  56. W. Guo, B. Liu, Y. Liu, T. Li, A. Fu, Q. Fang, Y. Nie, Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy, J. Alloys Compd. 776 (2019) 428–436 [CrossRef] [Google Scholar]
  57. Z.Q. Xu, Z.L. Ma, M. Wang, Y.W. Chen, Y.D. Tan, X.W. Cheng, Design of novel low-density refractory high entropy alloys for high-temperature applications, Mater. Sci. Eng. A 755 (2019) 318–322 [CrossRef] [Google Scholar]
  58. T. Yan, E. Yu, Y. Zhao, Constitutive modeling for flow stress of 55SiMnMo bainite steel at hot working conditions, Mater. Des. 50 (2013) 574–580 [CrossRef] [Google Scholar]
  59. X.M. Chen, Y.C. Lin, M.S. Chen, H.B. Li, D.-X. Wen, J.L. Zhang, M. He, Microstructural evolution of a nickel-based superalloy during hot deformation, Mater. Des. (2015) 41–49 [CrossRef] [Google Scholar]
  60. C.W. Park, M.S. Choi, H. Lee, J. Yoon, H.R. Javadinejad, J.H. Kim, High-temperature deformation behavior and microstructural evolution of as-cast and hot rolled-21S alloy during hot deformation, J. Mater. Res. Technol. 9 (2020) 13555–13569 [CrossRef] [Google Scholar]
  61. Q. Yang, M. Ma, Y. Tan, S. Xiang, F. Zhao, Y. Liang, Initial β grain size effect on high-temperature flow behavior of tb8 titanium alloys in single β phase field, Metals (Basel). 9 (2019) 1–19 [Google Scholar]
  62. Y. Wan, J. Mo, X. Wang, Z. Zhang, B. Shen, X. Liang, Mechanical properties and phase stability of WTaMoNbTi refractory high-entropy alloy at elevated temperatures, Acta Metall. Sin. (English Letters). 34 (2021) 1585–1590 [CrossRef] [Google Scholar]
  63. Q. Liu, G. Wang, Y. Liu, X. Sui, Y. Chen, S. Luo, Hot deformation behaviors of an ultrafine-grained MoNbTaTiV refractory high-entropy alloy fabricated by powder metallurgy, Mater. Sci. Eng. A 809 (2021) 1–10 [Google Scholar]
  64. M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, J. Calvo, Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718, Mater. Sci. Eng. A 678 (2016) 137–152 [CrossRef] [Google Scholar]
  65. Y.C. Lin, M.S. Chen, J. Zhong, Constitutive modeling for elevated temperature flow behavior of 42CrMo steel, Comput. Mater. Sci. 42 (2008) 470–477 [Google Scholar]
  66. H. Wu, S.P. Wen, H. Huang, K.Y. Gao, X.L. Wu, W. Wang, Z.R. Nie, Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy, J. Alloys Compd. 685 (2016) 869–880 [CrossRef] [Google Scholar]
  67. S. Miura, Y. Murasato, Y. Sekito, Y. Tsutsumi, K. Ohkubo, Y. Kimura, Y. Mishima, T. Mohri, Effect of microstructure on the high-temperature deformation behavior of Nb-Si alloys, Mater. Sci. Eng. A 510–511 (2009) 317–321 [CrossRef] [Google Scholar]
  68. E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys, Nat. Rev. Mater. 4 (2019) 515–534 [CrossRef] [Google Scholar]
  69. T. Li, Y. Lu, Z. Li, T. Wang, T. Li, Hot deformation behavior and microstructure evolution of non-equimolar Ti2ZrHf V0. 5Ta0.2 refractory high-entropy alloy, Intermetallics (Barking) 146 (2022) 1–11 [Google Scholar]
  70. O.N. Senkov, J.P. Couzinie, S.I. Rao, V. Soni, R. Banerjee, Temperature dependent deformation behavior and strengthening mechanisms in a low density refractory high entropy alloy Al10Nb15Ta5Ti30Zr40, Materialia (Oxf) 9 (2020) 1–16 [Google Scholar]
  71. Z. Yu, B. Xie, Z. Zhu, B. Xu, M. Sun, High-temperature deformation behavior and processing maps of a novel AlNbTi3VZr1.5 refractory high entropy alloy, J. Alloys Compd. 912 (2022) 1–11 [Google Scholar]
  72. Z.C. Bai, X.F. Ding, Q. Hu, M. Yang, Z.T. Fan, X.W. Liu, Unique deformation behavior and microstructure evolution in high-temperature processing of a low-density TiAlVNb2 refractory high-entropy alloy, J. Alloys Compd. 885 (2021) [Google Scholar]
  73. H. Liang, H. Guo, Y. Nan, C. Qin, X. Peng, J. Zhang, The construction of constitutive model and identification of dynamic softening mechanism of high-temperature deformation of Ti-5Al-5Mo-5V-1Cr-1Fe alloy, Mater. Sci. Eng. A. 615 (2014) 42–50 [CrossRef] [Google Scholar]
  74. Y. Wu, Y. Liu, C. Li, X. Xia, Y. Huang, H. Li, H. Wang, Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression, J. Alloys Compd. 712 (2017) 687–695 [CrossRef] [Google Scholar]
  75. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014) 130–207 [CrossRef] [Google Scholar]
  76. W. Wei, T. Wang, C. Wang, M. Wu, Y. Nie, J. Peng, Ductile W0. 4MoNbxTaTi refractory high-entropy alloys with excellent elevated temperature strength, Mater Lett. 295 (2021) 1–4 [Google Scholar]
  77. Q. Liu, G. Wang, Y. Liu, X. Sui, Y. Chen, S. Luo, Hot deformation behaviors of an ultrafine-grained MoNbTaTiV refractory high-entropy alloy fabricated by powder metallurgy, Mater. Sci. Eng. A 809 (2021) 140922 [Google Scholar]
  78. R. Feng, B. Feng, M.C. Gao, C. Zhang, J.C. Neuefeind, J.D. Poplawsky, Y. Ren, K. An, M. Widom, P.K. Liaw, Superior high-temperature strength in a supersaturated refractory high-entropy alloy, Adv. Mater. 33 (2021) 1–9 [Google Scholar]
  79. Y. Zhang, J.P. Liu, S.Y. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, J.W. Qiao, Y.L. Wang, Serration and noise behaviors in materials, Prog. Mater. Sci. 90 (2017) 358–460 [CrossRef] [Google Scholar]
  80. X.W. Liu, Z.C. Bai, X.F. Ding, J.Q. Yao, L. Wang, Y.Q. Su, Z.T. Fan, J.J. Guo, A novel light-weight refractory high-entropy alloy with high specific strength and intrinsic deformability, Mater. Lett. 287 (2021) 1–4 [Google Scholar]
  81. Y. Chen, Y. Li, X. Cheng, C. Wu, B. Cheng, Z. Xu, The microstructure and mechanical properties of refractory high-entropy alloys with high plasticity, Materials 11 (2018) 1–11 [Google Scholar]
  82. Y. Wan, Q. Wang, J. Mo, Z. Zhang, X. Wang, X. Liang, B. Shen, WReTaMo refractory high-entropy alloy with high strength at 1600 °C, Adv. Eng. Mater. 24 (2022) 1–31 [Google Scholar]
  83. N. Yurchenko, E. Panina, D. Shaysultanov, S. Zherebtsov, N. Stepanov, Refractory high entropy alloy with ductile intermetallic B2 matrix/hard bcc particles and exceptional strain hardening capacity, Materialia (Oxf) 20 (2021) 1–7 [Google Scholar]
  84. S. Wu, D. Qiao, H. Zhang, J. Miao, H. Zhao, J. Wang, Y. Lu, T. Wang, T. Li, Microstructure and mechanical properties of CxHf0.25NbTa W0. 5 refractory high-entropy alloys at room and high temperatures, J. Mater. Sci. Technol. 97 (2022) 229–238 [CrossRef] [Google Scholar]
  85. T. Huang, S. Wu, H. Jiang, Y. Lu, T. Wang, T. Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys, Int. J. Minerals Metall. Mater. 27 (2020) 1318–1325 [CrossRef] [Google Scholar]
  86. C. Yang, H. Bian, K. Aoyagi, Y. Hayasaka, K. Yamanaka, A. Chiba, Synergetic strengthening in HfMoNbTaTi refractory high-entropy alloy via disordered nanoscale phase and semicoherent refractory particle, Mater. Des. 212 (2021) 110248 [Google Scholar]
  87. K.K. Tseng, C.C. Juan, S. Tso, H.C. Chen, C.W. Tsai, J.W. Yeh, Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr alloys, Entropy 21 (2019) 1–14 [Google Scholar]
  88. A. Chaudhuri, A. Sarkar, R. Kapoor, J.K. Chakravartty, R.K. Ray, S. Suwas, Understanding the mechanism of dynamic recrystallization during high-temperature deformation in Nb-1Zr-0. 1C alloy, J. Mater. Eng. Perform. 28 (2019) 448–462 [CrossRef] [Google Scholar]
  89. O.N. Senkov, J. Gild, T.M. Butler, Microstructure, mechanical properties and oxidation behavior of NbTaTi and NbTaZr refractory alloys, J. Alloys Compd. 862 (2021) 1–14 [Google Scholar]
  90. Y. Jia, L. Zhang, P. Li, X. Ma, L. Xu, S. Wu, Y. Jia, G. Wang, Microstructure and mechanical properties of Nb-Ti-V-Zr refractory medium-entropy alloys, Front. Mater. 7 (2020) 1–11 [Google Scholar]
  91. Y. Guo, J. He, W. Lu, L. Jia, Z. Li, The evolution of compositional and microstructural heterogeneities in a TaMo0. 5ZrTi1.5Al0.1Si0.2 high entropy alloy, Mater. Charact. 172 (2021) 1–11 [Google Scholar]
  92. R.R. Eleti, A.H. Chokshi, A. Shibata, N. Tsuji, Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy, Acta Mater. 183 (2020) 64–77 [CrossRef] [Google Scholar]
  93. B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys, 1st ed. (Butterworth-Heinemann, UK, 2014) [Google Scholar]
  94. Y. Zhang, Y. Liu, Y. Li, X. Chen, H. Zhang, Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite, Mater. Lett. 174 (2016) 82–85 [CrossRef] [Google Scholar]
  95. Q. Liu, G. Wang, Y. Liu, X. Sui, Y. Chen, S. Luo, Hot deformation behaviors of an ultrafine-grained MoNbTaTiV refractory high-entropy alloy fabricated by powder metallurgy, Mater. Sci. Eng. A 809 (2021) 1–10 [Google Scholar]
  96. H.Y. Yasuda, Y. Yamada, K. Cho, T. Nagase, Deformation behavior of HfNbTaTiZr high entropy alloy singe crystals and polycrystals, Mater. Sci. Eng. A 809 (2021) 1–10 [Google Scholar]
  97. M. Lei Hu, W. Dong Song, D. Bo Duan, Y. Wu, Dynamic behavior and microstructure characterization of TaNbHfZrTi high-entropy alloy at a wide range of strain rates and temperatures, Int. J. Mech. Sci. 182 (2020) 1–12 [Google Scholar]
  98. T.T. Li, W. Jiao, J. Miao, Y. Lu, E. Guo, T. Wang, T.T. Li, P.K. Liaw, A novel ZrNbMoTaW refractory high-entropy alloy with in-situ forming heterogeneous structure, Mater. Sci. Eng. A 827 (2021) 1–9 [Google Scholar]
  99. Q. Wei, G. Luo, R. Tu, J. Zhang, Q. Shen, Y. Cui, Y. Gui, A. Chiba, High-temperature ultra-strength of dual-phase Re0. 5MoNbW(TaC)0.5 high-entropy alloy matrix composite, J. Mater. Sci. Technol. 84 (2021) 1–9 [Google Scholar]
  100. R. Feng, B. Feng, M.C. Gao, C. Zhang, J.C. Neuefeind, J.D. Poplawsky, Y. Ren, K. An, M. Widom, P.K. Liaw, Superior high-temperature strength in a supersaturated refractory high-entropy alloy, Adv. Mater. 33 (2021) 1–9 [Google Scholar]
  101. Y.V.R.K. Prasad, K.P. Rao, S. Sasidhara, Hot Working Guide, 2nd edn. ( ASM International, Ohio, 2015) [Google Scholar]
  102. S.A. Sajjadi, A. Chaichi, H.R. Ezatpour, A. Maghsoudlou, M.A. Kalaie, Hot deformation processing map and microstructural evaluation of the Ni-based superalloy IN-738LC, J. Mater. Eng. Perform. 25 (2016) 1269–1275 [CrossRef] [Google Scholar]
  103. Z.Q. Xu, Z.L. Ma, Y. Tan, M. Wang, Y. Zhao, X.W. Cheng, Effects of Si additions on microstructures and mechanical properties of VNbTiTaSix refractory high-entropy alloys, J. Alloys Compd. 900 (2022) 1–9 [Google Scholar]
  104. X. Li, A. Fu, Y. Cao, S. Xu, S. Gao, High-temperature mechanical properties and deformation behavior of carbides reinforced TiNbTaZrHf composite, J. Alloys Compd. 894 (2022) 1–10 [Google Scholar]
  105. Y.W. Chen, Y.K. Li, X.W. Cheng, C. Wu, B. Cheng, High-temperature mechanical properties and microstructure of ZrTiHfNbMox (x = 0.5, 1.0, 1.5) refractory high entropy alloys, IOP Conf. Ser. Mater. Sci. Eng. 359 (2018) 1–5 [Google Scholar]
  106. A.N. Behera, R. Kapoor, A. Sarkar, J.K. Chakravartty, Hot deformation behaviour of niobium in temperature range 700−1500°C, Mater. Sci. Technol. 30 (2014) 637–644 [CrossRef] [Google Scholar]
  107. K. Wu, G.Q. Liu, B.F. Hu, C.Y. Wang, Y.W. Zhang, Y. Tao, J.T. Liu, Effect of processing parameters on hot compressive deformation behavior of a new Ni-Cr-Co based P/M superalloy, Mater. Sci. Eng. A 528 (2011) 4620–4629 [CrossRef] [Google Scholar]
  108. A. Momeni, The physical interpretation of the activation energy for hot deformation of Ni and Ni-30Cu alloys, J. Mater. Res. 31 (2016) 1077–1084 [CrossRef] [Google Scholar]
  109. C. Shi, X.G. Chen, Evolution of activation energies for hot deformation of 7150 aluminum alloys with various Zr and V additions, Mater. Sci. Eng. A 650 (2016) 197–209 [CrossRef] [Google Scholar]
  110. Y.C. Lin, X.M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des. 32 (2011) 1733–1759 [Google Scholar]
  111. G.R. Johnson, W.H. Cook, A computational constitutive model and data for metals subjected to large strain, high strain rates and high pressures, in The Seventh International Symposium on Ballistics, Den Haag, Netherlands (1983) pp. 541–547 [Google Scholar]
  112. J.J. Jonas, C.M. Sellars, W.J.M.G. Tegart, Strength and structure under hot-working conditions, Metall. Rev. 14 (1969) 1–24 [CrossRef] [Google Scholar]
  113. M. Wang, Z.L. Ma, Z.Q. Xu, X.W. Cheng, Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications, Scr. Mater. 191 (2021) 131–136 [CrossRef] [Google Scholar]
  114. T. Sakai, M. Ohashi, K. Chiba, J.J. Jonas, Recovery and recrystallization of polycrystalline nickel after hot working, Acta Metall. 36 (1988) 1781–1790 [CrossRef] [Google Scholar]
  115. Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Intermetallics effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys, Intermetallics 84 (2017) 153–157 [CrossRef] [Google Scholar]
  116. O.N. Senkov, S. Gorsse, D.B. Miracle, High temperature strength of refractory complex concentrated alloys, Acta Mater. 175 (2019) 394–405 [CrossRef] [Google Scholar]
  117. Y. Wan, J. Mo, X. Wang, Z. Zhang, B. Shen, X. Liang, Mechanical properties and phase stability of WTaMoNbTi refractory high ‑ entropy alloy at elevated temperatures, Acta Metall. Sin. 34 (2021) 1585–1590 [CrossRef] [Google Scholar]
  118. X.W. Liu, Z.C. Bai, X.F. Ding, J.Q. Yao, L. Wang, Y.Q. Su, Z.T. Fan, J.J. Guo, A novel light-weight refractory high-entropy alloy with high specific strength and intrinsic deformability, Mater. Lett. 287 (2021) 1–4 [Google Scholar]
  119. Y. Jia, L. Zhang, P. Li, X. Ma, L. Xu, S. Wu, Y. Jia, Microstructure and mechanical properties of Nb-Ti-V- Zr refractory medium-entropy alloys, Front Mater. 7 (2020) 1–11 [Google Scholar]
  120. M. Wang, Z. Ma, Z. Xu, X. Cheng, Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys, J. Alloys Compd. 803 (2019) 778–785 [CrossRef] [Google Scholar]
  121. H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, H.J. Christ, M. Heilmaier, Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al, J. Alloys Compd. 661 (2016) 206–215 [CrossRef] [Google Scholar]
  122. S. Wu, D. Qiao, H. Zhao, J. Wang, Y. Lu, A novel NbTa W0. 5 (Mo2C)x refractory high-entropy alloy with excellent mechanical properties, J. Alloys Compd. 889 (2022) 1–12 [Google Scholar]
  123. S. Wu, D. Qiao, H. Zhang, J. Miao, H. Zhao, J. Wang, Y. Lu, T. Wang, T. Li, Microstructure and mechanical properties of CxHf0. 25NbTa W0. 5 refractory high-entropy alloys at room and high temperatures, J. Mater. Sci. Technol. 97 (2022) 229–238 [CrossRef] [Google Scholar]
  124. Q. Wei, G. Luo, R. Tu, J. Zhang, Q. Shen, Y. Cui, Y. Gui, A. Chiba, High-temperature ultra-strength of dual-phase Re0. 5MoNbW(TaC)0.5 high-entropy alloy matrix composite, J. Mater. Sci. Technol. 84 (2021) 1–9 [Google Scholar]
  125. T. Li, J. Miao, Y. Lu, T. Wang, T. Li, Effect of Zr on the as-cast microstructure and mechanical properties of lightweight Ti2VNbMoZrx refractory high-entropy alloys, Int. J. Refract. Metals Hard Mater. 103 (2022) 1–8 [Google Scholar]
  126. X. Li, A. Fu, Y. Cao, S. Xu, S. Gao, High-temperature mechanical properties and deformation behavior of carbides reinforced TiNbTaZrHf composite, J. Alloys Compd. 894 (2022) 1–10 [Google Scholar]
  127. Y. Chen, Y. Li, X. Cheng, Z. Xu, C. Wu, B. Cheng, M. Wang, Interstitial strengthening of refractory ZrTiHfNb0. 5Ta0.5Ox (X = 0.05, 0.1, 0.2) high-entropy alloys, Mater. Lett. 228 (2018) 145–147 [Google Scholar]
  128. Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys, Intermetallics 84 (2017) 153–157 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.