Open Access
Review
Issue |
Manufacturing Rev.
Volume 12, 2025
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 25 | |
DOI | https://doi.org/10.1051/mfreview/2025001 | |
Published online | 16 January 2025 |
- S. Siengchin, A review on lightweight materials for defence applications: a present and future developments, Defence Technol. 24 (2023) 1–17 [CrossRef] [Google Scholar]
- J. Plocher, A. Panesar, Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures, Mater. Des. 183 (2019) 108164 [CrossRef] [Google Scholar]
- M.E. Korkmaz, M.K. Gupta, G. Robak, K. Moj, G.M. Krolczyk, M. Kuntoğlu, Development of lattice structure with selective laser melting process: a state of the art on properties, future trends and challenges, J. Manufactur. Process. 81 (2022) 1040–1063 [CrossRef] [Google Scholar]
- W. Wang, Y. Xiang, J. Yu, L. Yang, Development and prospect of smart materials and structures for aerospace sensing systems and applications, Sensors 23 (2023) 1545 [CrossRef] [PubMed] [Google Scholar]
- R. Huang, M. Riddle, D. Graziano, J. Warren, S. Das, S. Nimbalkar, E. Masanet, Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components, J. Clean. Prod. 135 (2016) 1559–1570 [CrossRef] [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine, Commercial aircraft propulsion and energy systems research: reducing global carbon emissions, National Academic Press, Washington, D.C. 2016 [Google Scholar]
- J.C. Williams, E.A. Starke Jr, Progress in structural materials for aerospace systems, Acta Mater. 51 (2003) 5775–5799 [CrossRef] [Google Scholar]
- B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, A. Du Plessis, Metal additive manufacturing in aerospace: a review, Mater. Des. 209 (2021) 110008 [CrossRef] [Google Scholar]
- S. Mohd Yusuf, S. Cutler, N. Gao, The impact of metal additive manufacturing on the aerospace industry, Metals 9 (2019) 1286 [CrossRef] [Google Scholar]
- L. Zhu, N. Li, P.R.N. Childs, Light weighting in aerospace component and system design, Propuls. Power Res. 7 (2018) 103–119 [CrossRef] [Google Scholar]
- Y. Liu, X. Sun, V. Sethi, D. Nalianda, Y.G. Li, L. Wang, Review of modern low emissions combustion technologies for aero gas turbine engines, Progr. Aerospace Sci. 94 (2017) 12–45 [CrossRef] [Google Scholar]
- T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges, Compos. Part B: Eng. 143 (2018) 172–196 [CrossRef] [Google Scholar]
- A. Nazir, O. Gokcekaya, K.M.M. Billah, O. Ertugrul, J. Jiang, J. Sun, S. Hussain, Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3D Printing of materials and cellular metamaterials, Mater. Des. 226 (2023) 111661 [CrossRef] [Google Scholar]
- X. Fu, Y. Lin, X.J. Yue, XunMa, B. Hur, X.Z. Yue, A review of additive manufacturing (3D printing) in aerospace: technology, materials, applications, and challenges, in: Mobile Wireless Middleware, Operating Systems and Applications: 10th International Conference on Mobile Wireless Middleware, Operating Systems and Applications (MOBILWARE 2021), Springer International Publishing, Cham, 2022, pp. 73–98 [CrossRef] [Google Scholar]
- C. Qi, F. Jiang, S. Yang, Advanced honeycomb designs for improving mechanical properties: a review, Compos. Part B: Eng. 227 (2021) 109393 [CrossRef] [Google Scholar]
- A. Bührig-Polaczek, C. Fleck, T. Speck, P. Schüler, S.F. Fischer, M. Caliaro, M. Thielen, Biomimetic cellular metals—using hierarchical structuring for energy absorption, Bioinspirat. Biomimet. 11 (2016) 045002 [CrossRef] [Google Scholar]
- P. Fratzl, J. Dunlop, R. Weinkamer (Eds.), Materials design inspired by nature: function through inner architecture, Royal Society of Chemistry 2015 [Google Scholar]
- M.F. Horstemeyer, Integrated Computational Materials Engineering (ICME) for metals: using multiscale modeling to invigorate engineering design with science, John Wiley Sons, 2012 [Google Scholar]
- K. Song, D. Li, C. Zhang, T. Liu, Y. Tang, Y.M. Xie, W. Liao, Bio-inspired hierarchical honeycomb metastructures with superior mechanical properties, Compos. Struct. 304 (2023) 116452 [CrossRef] [Google Scholar]
- Q. Zhang, X. Yang, P. Li, G. Huang, S. Feng, C. Shen, T.J. Lu, Bioinspired engineering of honeycomb structure-Using nature to inspire human innovation, Progr. Mater. Sci. 74 (2015) 332–400 [CrossRef] [Google Scholar]
- Z. Wang, Recent advances in novel metallic honeycomb structure, Compos. Part B: Eng. 166 (2019) 731–741 [CrossRef] [Google Scholar]
- N. Vogel, M. Retsch, C.A. Fustin, A. Del Campo, U. Jonas, Advances in colloidal assembly: the design of structure and hierarchy in two and three dimensions, Chem. Rev. 115 (2015) 6265–6311 [CrossRef] [Google Scholar]
- Y. Chen, Y. Ma, Q. Yin, F. Pan, C. Cui, Z. Zhang, B. Liu, Advances in mechanics of hierarchical composite materials, Compos. Sci. Technol. 214 (2021) 108970 [CrossRef] [Google Scholar]
- X.Y. Zhang, G. Fang, J. Zhou, Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: a review, Materials 10 (2017) 50 [CrossRef] [Google Scholar]
- D.L. McDowell, D. Backman, Simulation-assisted design and accelerated insertion of materials, in S. Ghosh, D. Dimiduk (Eds.), Computational Methods for Microstructure-Property Relationships, Springer, Boston, MA, 2011, pp. 617–647 [CrossRef] [Google Scholar]
- K. Ru, R.F. Swati, H. Zeng, Z. Khan, Z. Chen, A. Qian, L. Hu, The whole bone mechanical properties and modeling study, in: Bone Cell Biomechanics, Mechanobiology and Bone Diseases, Academic Press, 2024, pp. 53–94 [CrossRef] [Google Scholar]
- P. Colombo, E. Bernardo, Cellular structures, in: R. Riedel, I.-W. Chen (Eds.), Ceramics Science and Technology, Volume 1: Structures, Wiley‐VCH, 2008, p. 407 [CrossRef] [Google Scholar]
- K.A. Hoffmann, T.G. Chen, M.R. Cutkosky, D. Lentink, Bird-inspired robotics principles as a framework for developing smart aerospace materials, J. Compos. Mater. 57 (2023) 679–710 [CrossRef] [Google Scholar]
- B. Vazic, B.E. Abali, H. Yang, P. Newell, Mechanical analysis of heterogeneous materials with higher-order parameters, Eng. Comput 38 (2021) 1–17 [Google Scholar]
- S. Arabnejad, D. Pasini, Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods, Int. J. Mech. Sci. 77 (2013) 249–262 [CrossRef] [Google Scholar]
- M. Benedetti, A. Du Plessis, R.O. Ritchie, M. Dallago, S.M.J. Razavi, F. Berto, Architected cellular materials: a review on their mechanical properties towards fatigue-tolerant design and fabrication, Mater. Sci. Eng. R 144 (2021) 100606 [CrossRef] [Google Scholar]
- A. Du Plessis, N. Razavi, M. Benedetti, S. Murchio, M. Leary, M. Watson, F. Berto, Properties and applications of additively manufactured metallic cellular materials: a review, Progr. Mater. Sci. 125 (2022) 100918 [CrossRef] [Google Scholar]
- A. Ajdari, B.H. Jahromi, J. Papadopoulos, H. Nayeb-Hashemi, A. Vaziri, Hierarchical honeycombs with tailorable properties, Int. J. Solids Struct. 49 (2012) 1413–1419 [CrossRef] [Google Scholar]
- Y. Sun, B. Wang, N. Pugno, B. Wang, Q. Ding, In-plane stiffness of the anisotropic multifunctional hierarchical honeycombs, Compos. Struct. 131 (2015) 616–624 [CrossRef] [Google Scholar]
- Y. Chen, T. Li, Z. Jia, F. Scarpa, C.W. Yao, L. Wang, 3D printed hierarchical honeycombs with shape integrity under large compressive deformations, Mater. Des. 137 (2018) 226–234 [CrossRef] [Google Scholar]
- K. Song, D. Li, C. Zhang, T. Liu, Y. Tang, Y.M. Xie, W. Liao, Bio-inspired hierarchical honeycomb metastructures with superior mechanical properties, Compos. Struct. 304 (2023) 116452 [CrossRef] [Google Scholar]
- D. Hu, Y. Wang, B. Song, L. Dang, Z. Zhang, Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing, Compos. Part B: Eng. 162 (2019) 21–32 [CrossRef] [Google Scholar]
- G. Sun, H. Jiang, J. Fang, G. Li, Q. Li, Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact, Mater. Des. 110 (2016) 705–719 [CrossRef] [Google Scholar]
- D. Zhang, Q. Fei, J. Liu, D. Jiang, Y. Li, Crushing of vertex-based hierarchical honeycombs with triangular substructures, Thin-Walled Struct. 146 (2020) 106436 [CrossRef] [Google Scholar]
- Q. He, J. Feng, Y. Chen, H. Zhou, Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading, J. Sandwich Struct. Mater. 22 (2020) 771–796 [CrossRef] [Google Scholar]
- H.L. Tan, Z.C. He, K.X. Li, E. Li, A.G. Cheng, B. Xu, In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson's ratio, Compos. Struct. 229 (2019) 111415 [CrossRef] [Google Scholar]
- J. Fang, G. Sun, N. Qiu, T. Pang, S. Li, Q. Li, On hierarchical honeycombs under out-of-plane crushing, Int. J. Solids Struct. 135 (2018) 1–13 [CrossRef] [Google Scholar]
- Y. Chen, Z. Jia, L. Wang, Hierarchical honeycomb lattice metamaterials with improved thermal resistance and mechanical properties, Compos. Struct. 152 (2016) 395–402 [CrossRef] [Google Scholar]
- M. Ryvkin, R. Shraga, Fracture toughness of hierarchical self-similar honeycombs, Int. J. Solids Struct. 152 (2018) 151–160 [CrossRef] [Google Scholar]
- Q. Zou, G. Luo, A review of geometric modeling methods in microstructure design and manufacturing. arXiv preprint arXiv:2411. 15833 (2024) [Google Scholar]
- A. Charles, Advancing Particle-Based Magneto-Polymer Composites: Processing, Structure, and Performance Optimisation for Actuation, EMI Suppression, and Energy Transduction (Doctoral dissertation, UNSW Sydney), 2024 [Google Scholar]
- Y. Sun, Q.M. Li, Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling, Int. J. Impact Eng. 112 (2018) 74–115 [CrossRef] [Google Scholar]
- O. Rahman, K.Z. Uddin, J. Muthulingam, G. Youssef, C. Shen, B. Koohbor, Density‐graded cellular solids: mechanics, fabrication, and applications, Adv. Eng. Mater. 24 (2022) 2100646 [CrossRef] [Google Scholar]
- Z. Fan, G. Ye, S. Li, Z. Bai, Q. Yong, Y. Zhang, Y. Hu, Compression performance and failure mechanism of honeycomb structures fabricated with reinforced wood, in: Structures. Elsevier, 2023, Vol. 48, pp. 1868–1882 [CrossRef] [Google Scholar]
- F. Libonati, M.J. Buehler, Advanced structural materials by bioinspiration, Adv. Eng. Mater. 19, 1600787 2017 [CrossRef] [Google Scholar]
- X. Miao, J. Hu, Y. Xu, J. Su, Y. Jing, Review on mechanical properties of metal lattice structures, Compos. Struct. 342 (2024) 118267 [CrossRef] [Google Scholar]
- B. Sadeghi, P.D. Cavaliere, Reviewing the integrated design approach for augmenting strength and toughness at macro-and micro-scale in high-performance advanced composites, Materials 16 (2023) 5745 [CrossRef] [Google Scholar]
- L. Musenich, A. Stagni, F. Libonati, Hierarchical bioinspired architected materials and structures, Extreme Mech. Lett. 58 (2023) 101945 [CrossRef] [Google Scholar]
- Y. Liu, T. Wang, H. Chen, Z. Li, S. Li, D. Wang, K. Kosiba, Impact behaviors of additively manufactured metals and structures: a review, Int. J. Impact Eng. 191 (2024) 104992 [CrossRef] [Google Scholar]
- J.L. Fredricks, A.M. Jimenez, P. Grandgeorge, R. Meidl, E. Law, J. Fan, E. Roumeli, Hierarchical biopolymer‐based materials and composites, J. Polym. Sci. 61 (2023) 2585–2632 [CrossRef] [Google Scholar]
- A. Vaziri, R. Ghosh, Numerical analysis of the response of biomimetic cellular materials under static and dynamic loadings, in: Blast Mitigation: Experimental and Numerical Studies. Springer New York, New York, NY, 2013, pp. 55–89 [Google Scholar]
- S. Wang, W. Pei, S. Jin, H. Yu, Numerical and theoretical analysis of the out-of-plane crushing behavior of a sinusoidal-shaped honeycomb structure with tunable mechanical properties, Structures 61 (2024) 106147 [CrossRef] [Google Scholar]
- M.Y. Khalid, Z.U. Arif, A. Tariq, M. Hossain, R. Umer, M. Bodaghi, 3D printing of active mechanical metamaterials: a critical review, Mater. Des. 246 (2024) 113305 [CrossRef] [Google Scholar]
- H.P. Yu, Y.J. Zhu, Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong, Chem. Soc. Rev. 53 (2024) 4490–4606 [CrossRef] [Google Scholar]
- A. Dutta, S.K. Pal, S.K. Panda, Comprehensive investigation on crushing performance and collapse mechanism of friction stir welded aluminium honeycomb by damage modeling, J. Manufactur. Process. 120 (2024) 733–755 [CrossRef] [Google Scholar]
- T. Van Le, A. Ghazlan, T. Ngo, T. Nguyen, A. Remennikov, A comprehensive review of selected biological armor systems-from structure-function to bio-mimetic techniques, Compos. Struct. 225 (2019) 111172 [CrossRef] [Google Scholar]
- P. Yan, H. Huang, M. Meloni, B. Li, J. Cai, Mechanical properties inside origami-inspired structures: an overview, Appl. Mech. Rev. 77 (2024) 1–129 [Google Scholar]
- N. Choudhary, D. Kaur, Vibration damping materials and their applications in nano/micro-electro-mechanical systems: a review, J. Nanosci. Nanotechnol. 15 (2015) 1907–1924 [CrossRef] [Google Scholar]
- S. Ghosh, J. Zollinger, M. Zaloznik, D. Banerjee, C.K. Newman, R. Arroyave, Modeling of hierarchical solidification microstructures in metal additive manufacturing: challenges and opportunities, Addit. Manufactur. 78 (2023) 103845 [CrossRef] [Google Scholar]
- V. Ntziachristos, Going deeper than microscopy: the optical imaging frontier in biology, Nat. Methods 7 (2010) 149–614 [Google Scholar]
- B.J. Inkson, Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, in: Materials characterization using nondestructive evaluation (NDE) methods, Edited by: G. Hübschen, I. Altpeter, R. Tschuncky, H. Herrmann, Woodhead Publishing, 2016, pp. 17–43 [CrossRef] [Google Scholar]
- A.D. Kammers, S. Daly, Small-scale patterning methods for digital image correlation under scanning electron microscopy, Measur. Sci. Technol. 22 (2011) 125501 [CrossRef] [Google Scholar]
- D. Johnson, N. Hilal, Characterisation and quantification of membrane surface properties using atomic force microscopy: a comprehensive review, Desalination 356 (2015) 149–164 [CrossRef] [Google Scholar]
- E.Y. Chua, J.H. Mendez, M. Rapp, S.L. Ilca, Y.Z. Tan, K. Maruthi, B. Carragher, Better, faster, cheaper: recent advances in cryo-electron microscopy, Annu. Rev. Biochem. 91 (2022) 1–32 [CrossRef] [Google Scholar]
- S.S. Gill, M. Xu, C. Ottaviani, P. Patros, R. Bahsoon, A. Shaghaghi, S. Uhlig, AI for next generation computing: emerging trends and future directions, Internet of Things 19 (2022) 100514 [CrossRef] [Google Scholar]
- C.P. Paul, A.N. Jinoop, K.S. Bindra, Metal additive manufacturing using lasers, in: Additive Manufacturing: Applications and Innovations Edited by: R. Singh, J.P. Davim Publisher: CRC Press, Taylor & Francis Group (2018) 37–94 [CrossRef] [Google Scholar]
- R. Oftadeh, B. Haghpanah, J. Papadopoulos, A.M.S. Hamouda, H. Nayeb-Hashemi A. Vaziri, Mechanics of anisotropic hierarchical honeycombs, Int. J. Mech. Sci. 81 (2014) 126–136 [CrossRef] [Google Scholar]
- R. Oftadeh, B. Haghpanah, D. Vella, A. Boudaoud, A. Vaziri, Optimal fractal-like hierarchical honeycombs, Phys. Rev. Lett. 113 (2014) 104301 [CrossRef] [Google Scholar]
- G. Sun, H. Jiang, J. Fang, G. Li, Q. Li, Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact, Mater. Des. 110 (2016) 705–719 [CrossRef] [Google Scholar]
- B. Haghpanah, R. Oftadeh, J. Papadopoulos, A. Vaziri, Self-similar hierarchical honeycombs, Proc. Royal Soc. A 469 (2013) 20130022 [CrossRef] [Google Scholar]
- H. Yin, X. Huang, F. Scarpa, G. Wen, Y. Chen, C. Zhang, In-plane crashworthiness of bio-inspired hierarchical honeycombs, Compos. Struct. 192 (2018) 516–527 [CrossRef] [Google Scholar]
- B. Zhang, J. Sun, U. Salahuddin, P.X. Gao, Hierarchical and scalable integration of nanostructures for energy and environmental applications: a review of processing, devices, and economic analyses, Nano Futures 4 (2020) 012002 [CrossRef] [Google Scholar]
- C.M. Geng, The Feasibility of Honeycomb Structure to Enhance Daylighting and Energy Performance for High-Rise Buildings, Doctoral dissertation, Illinois Institute of Technology, 2022 [Google Scholar]
- Z. Guo, Multi-Stage Additive Manufacturing of Multi-Scale Functional Structures. Doctoral Dissertation, State University of New York at Buffalo, 2023. [Google Scholar]
- Y. Chen, B. Dang, C. Wang, Y. Wang, Y. Yang, M. Liu, Q. Sun, Intelligent designs from nature: biomimetic applications in wood technology, Progr. Mater. Sci. 139 (2023) 101164 [CrossRef] [Google Scholar]
- P.W. Sayyad, S.J. Park, T.J. Ha, Bioinspired nanoplatforms for human-machine interfaces: recent progress in materials and device applications, Biotechnol. Adv. 70 (2023) 108297 [Google Scholar]
- Y. Li, Z. Feng, L. Hao, L. Huang, C. Xin, Y. Wang, T. Peijs, A review on functionally graded materials and structures via additive manufacturing: from multi‐scale design to versatile functional properties, Adv. Mater. Technolog. 5 (2020) 1900981 [CrossRef] [Google Scholar]
- D. Gu, X. Shi, R. Poprawe, D.L. Bourell, R. Setchi, J. Zhu, Material-structure-performance integrated laser-metal additive manufacturing, Science 372 (2021) eabg1487 [CrossRef] [Google Scholar]
- A. Verma, A. Kapil, D. Klobčar, A. Sharma, A review on multiplicity in multi-material additive manufacturing: process, capability, scale, and structure, Materials 16 (2023) 5246 [CrossRef] [Google Scholar]
- G. Liu, X. Zhang, X. Chen, Y. He, L. Cheng, M. Huo, J. Lu, Additive manufacturing of structural materials, Mater. Sci. Eng. R 145 (2021) 100596 [CrossRef] [Google Scholar]
- J. Wu, O. Sigmund, J.P. Groen, Topology optimization of multi-scale structures: a review, Struct. Multidiscip. Optim. 63 (2021) 1455–1480 [CrossRef] [MathSciNet] [Google Scholar]
- C.E. Harris, J.H. Starnes Jr, M.J. Shuart, Design and manufacturing of aerospace composite structures, state-of-the-art assessment, J. Aircraft 39 (2002) 545–560 [CrossRef] [Google Scholar]
- X. Yang, J. Ma, D. Wen, J. Yang, Crashworthy design and energy absorption mechanisms for helicopter structures: a systematic literature review, Progr. Aerospace Sci. 114 (2020) 100618 [CrossRef] [Google Scholar]
- M. Pogosyan, E. Nazarov, A. Bolshikh, V. Koroliskii, N. Turbin, K. Shramko, Aircraft composite structures integrated approach: a review, J. Phys.: Conf. Ser. 1925 (2021) 012005 [CrossRef] [Google Scholar]
- J. Wang, Y. Li, G. Hu, M. Yang, Lightweight research in engineering: a review, Appl. Sci. 9 (2019) 5322 [CrossRef] [Google Scholar]
- S. Siengchin, A review on lightweight materials for defence applications: a present and future developments, Defence Technol. 24 (2023) 1–17 [Google Scholar]
- M.B. Kumar, P. Sathiya, Methods and materials for additive manufacturing: A critical review on advancements and challenges, Thin-Walled Struct. 159 (2021) 107228 [CrossRef] [Google Scholar]
- Y. Yang, X. Song, X. Li, Z. Chen, C. Zhou, Q. Zhou, Y. Chen, Recent progress in biomimetic additive manufacturing technology: from materials to functional structures, Adv. Mater. 30 (2018) 1706539 [CrossRef] [Google Scholar]
- S. Aghajani, C. Wu, Q. Li, J. Fang, Additively manufactured composite lattices: a state-of-the-art review on fabrications, architectures, constituent materials, mechanical properties, and future directions, Thin-Walled Struct. 197 (2023) 111539 [Google Scholar]
- G.D. Goh, K.K. Wong, N. Tan, H.L. Seet, M.L.S. Nai, Large-format additive manufacturing of polymers: a review of fabrication processes, materials, and design, Virtual Phys. Prototyp. 19 (2024) e2336160 [CrossRef] [Google Scholar]
- A. Al Noman, B.K. Kumar, T. Dickens, Field assisted additive manufacturing for polymers and metals: materials and methods, Virtual Phys. Prototyp. 18 (2023) e2256707 [CrossRef] [Google Scholar]
- A.R. Sani, A. Zolfagharian, A.Z. Kouzani, Artificial intelligence‐augmented additive manufacturing: insights on closed‐loop 3D printing, Adv. Intell. Syst. 6 (2024) 2400102 [CrossRef] [Google Scholar]
- M. Shahbazi, H. Jäger, R. Ettelaie, J. Chen, P.A. Kashi, A. Mohammadi, Dispersion strategies of nanomaterials in polymeric inks for efficient 3D printing of soft and smart 3D structures: a systematic review, Adv. Colloid Interface Sci. 333 (2024) 103285 [CrossRef] [Google Scholar]
- Q. Chen, G.A. Thouas, Metallic implant biomaterials, Mater. Sci. Eng.: R: Rep. 87 (2015) 1–57 [CrossRef] [Google Scholar]
- G. Waghmare, K. Waghmare, S. Bagde, M. Deshmukh, D.N. Kashyap, V.T. Shahu, Materials evolution in dental implantology: a comprehensive review, J. Adv. Res. Appl. Mech. 123 (2024) 75–100 [CrossRef] [Google Scholar]
- N. Hossain, M.H. Mobarak, M.A. Islam, A. Hossain, M.Z. Al Mahmud, M.T. Rayhan, M.A. Chowdhury, Recent development of dental implant materials, synthesis process, and failure − a review, Results Chem. 6 (2023) 101136 [CrossRef] [Google Scholar]
- S. Jafari, S.E. Harandi, R.K. Singh Raman, A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications, Jom 67 (2015) 1143–1153 [Google Scholar]
- Y. Sun, W. Hu, S. Zhang, Y. Lu, J. Wang, G. Ma, Q. Wang, Corrosion fatigue behavior of porous Cu-bearing Ti alloy fabricated by selective laser melting, J. Mater. Res. Technol. 23 (2023) 1630–1643 [CrossRef] [Google Scholar]
- K. Slámečka, A. Kashimbetova, J. Pokluda, T. Zikmund, J.Kaiser, E.B. Montufar, L. Čelko, Fatigue behaviour of titanium scaffolds with hierarchical porosity produced by material extrusion additive manufacturing, Mater. Des. 225 (2023) 111453 [CrossRef] [Google Scholar]
- Y. Lu, Y. Zhou, X. Liang, X. Zhang, C. Zhang, M. Zhu, J.Lin, Early bone ingrowth of Cu-bearing CoCr scaffolds produced by selective laser melting: an in vitro and in vivo study, Mater. Des. 228 (2023) 111822 [CrossRef] [Google Scholar]
- A. Zhakeyev, P. Wang, L. Zhang, W. Shu, H. Wang, J.Xuan, Additive manufacturing: unlocking the evolution of energy materials, Adv. Sci. 4 (2017) 1700187 [CrossRef] [Google Scholar]
- G. Gong, J. Ye, Y. Chi, Z. Zhao, Z. Wang, G. Xia, C. Chen, Research status of laser additive manufacturing for metal: a review, J. Mater. Res. Technol. 15 (2021) 855–884 [CrossRef] [Google Scholar]
- C. Han, Q. Fang, Y. Shi, S.B. Tor, C.K. Chua, K. Zhou, Recent advances on high‐entropy alloys for 3D printing, Adv. Mater. 32 (2020) 1903855 [CrossRef] [Google Scholar]
- W. Zhang, A. Chabok, B.J. Kooi, Y. Pei, Additive manufactured high entropy alloys: a review of the microstructure and properties, Mater. Des. 220 (2022) 110875 [CrossRef] [Google Scholar]
- Z. Liu, D. Zhao, P. Wang, M. Yan, C. Yang, Z. Chen, Z. Lu, Additive manufacturing of metals: microstructure evolution and multistage control, J. Mater. Sci. Technol. 100 (2022) 224–236 [CrossRef] [Google Scholar]
- L.C. Zhang, Y. Liu, S. Li, Y. Hao, Additive manufacturing of titanium alloys by electron beam melting: a review, Adv. Eng. Mater. 20 (2018) 1700842 [CrossRef] [Google Scholar]
- L.C. Carolo, A review on the influence of process variables on the surface roughness of Ti-6Al-4V by electron beam powder bed fusion, Addit. Manufactur. 59 (2022) 103103 [CrossRef] [Google Scholar]
- M. Ziaee, N.B. Crane, Binder jetting: a review of process, materials, and methods, Addit. Manufactur. 28 (2019) 781–801 [CrossRef] [Google Scholar]
- A. Lores, N. Azurmendi, I. Agote, E. Zuza, A review on recent developments in binder jetting metal additive manufacturing: materials and process characteristics, Powder Metall. 62 (2019) 267–296 [CrossRef] [Google Scholar]
- H. Miyanaji, M. Orth, J.M. Akbar, L. Yang, Process development for green part printing using binder jetting additive manufacturing, Front. Mech. Eng. 13 (2018) 504–512 [CrossRef] [Google Scholar]
- M. Askari, D.A. Hutchins, P.J. Thomas, L. Astolfi, R.L. Watson, M. Abdi, A.T. Clare, Additive manufacturing of metamaterials: a review, Addit. Manufactur. 36 (2020) 101562 [CrossRef] [Google Scholar]
- I. Gibson, D. Rosen, B. Stucker, I. Gibson, D. Rosen, B. Stucker, Design for additive manufacturing, in: Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Publisher: Springer Nature 2015, pp. 399–435 [Google Scholar]
- J. Fan, L. Zhang, S. Wei, Z. Zhang, S.K. Choi, B. Song, Y. Shi, A review of additive manufacturing of metamaterials and developing trends, Mater. Today 50 (2021) 303–328 [CrossRef] [Google Scholar]
- O.H. Laguna, P.F. Lietor, F.I. Godino, F.A. Corpas-Iglesias, A review on additive manufacturing and materials for catalytic applications: milestones, key concepts, advances and perspectives, Mater. Des. 208 (2021) 109927 [CrossRef] [Google Scholar]
- W.T. Nugroho, Y. Dong, A. Pramanik, M.C.P. Selvan, Z.Zhang, S. Ramakrishna, Additive manufacturing of re-entrant structures: well-tailored structures, unique properties, modelling approaches and real applications, Addit. Manufactur. 78 (2023) 103829. [CrossRef] [Google Scholar]
- H. Pang, Y. Duan, L. Huang, L. Song, J. Liu, T. Zhang, X. Liu, Research advances in composition, structure and mechanisms of microwave absorbing materials, Compos. Part B: Eng. 224 (2021) 109173 [CrossRef] [Google Scholar]
- S.R. Ede, H. Yu, C.H. Sung, D. Kisailus, Bio‐inspired functional materials for environmental applications, Small Methods 8 (2024) 2301227 [CrossRef] [Google Scholar]
- Y. Gao, X. Chen, Y. Wei, Graded honeycombs with high impact resistance through machine learning-based optimization, Thin-Walled Struct. 188 (2023) 110794 [CrossRef] [Google Scholar]
- T.P. Ribeiro, L.F. Bernardo, J.M. Andrade, Topology optimisation in structural steel design for additive manufacturing, Appl. Sci. 11 (2021) 2112 [CrossRef] [Google Scholar]
- T.R. Hawkins, O.M. Gausen, A.H. Strømman, Environmental impacts of hybrid and electric vehicles—a review, Int. J. Life Cycle Assess. 17 (2012) 997–1014 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.