Open Access
Manufacturing Rev.
Volume 1, 2014
Article Number 13
Number of page(s) 13
Published online 09 September 2014
  1. S.M. Johnson, Optimal two and three-stage production schedules with set up times included, Naval Research Logistics Quarterly 1 (1954) 61–68. [Google Scholar]
  2. W.H. Yang, A study on the intelligent neural network training using the electromagnetism algorithm, Unpublished Master Thesis, Dept. of Industrial Engineering and Management, I-Shou University, Kaohsiung County, Taiwan, 2002. [Google Scholar]
  3. R. Ruiz, T. Stützle, An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives, European Journal of Operational Research 187, 3 (2008) 1143–1159. [CrossRef] [Google Scholar]
  4. M. Khalili, M.J. Tarokh, B. Naderi, Using electromagnetism algorithm for determining the number of kanbans in a multi-stage supply chain system, Journal of Industrial Engineering 6 (2010) 63–72. [Google Scholar]
  5. P. Wu, W.-H. Yang, N.-C. Wei, An electromagnetism algorithm of neural network analysis – an application to textile retail operation, Journal of the Chinese Institute of Industrial Engineers 21 (2004) 59–67. [CrossRef] [Google Scholar]
  6. M.S. Salvador, A solution to a special case of flow shop scheduling problems, in: S.E. Elmaghraby (Ed.), Symposium of the Theory of Scheduling and its Applications, Springer, New York, 1973, pp. 83–91. [CrossRef] [Google Scholar]
  7. R. Linn, W. Zhang, Hybrid flow shop scheduling: a survey, Computers & Industrial Engineering 37, 1–2 (1999) 57–61. [CrossRef] [Google Scholar]
  8. H. Wang, Flexible flowshop scheduling: optimum, heuristics, and artificial intelligence solutions, Expert Systems 22, 2 (2005) 78–85. [CrossRef] [Google Scholar]
  9. O. Moursli, Y. Pochet, A branch-and-bound algorithm for the hybrid flowshop, International Journal of Production Economics 64, 1–3 (2000) 113–125. [CrossRef] [Google Scholar]
  10. C. Sriskandarajah, S.P. Sethi, Scheduling algorithms for flexible flowshops: worst and average case performance, European Journal of Operational Research 43, 2 (1989) 143–160. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Guinet, M.M. Solomon, P.K. Kedia, A. Dussauchoy, A computational study of heuristics for two-stage flexible flowshops, International Journal of Production Research 34, 5 (1996) 1399–1415. [CrossRef] [Google Scholar]
  12. E. Nowicki, C. Smutnicki, The flow shop with parallel machines: a tabu search approach, European Journal of Operational Research 106, 2–3 (1998) 226–253. [CrossRef] [Google Scholar]
  13. M. Gourgand, N. Grangeon, S. Norre, Metaheuristics for the deterministic hybrid flow shop problem, Proceeding of the International Conference on Industrial Engineering and Production Management (IEPM’99), Glasgow, United Kingdom, July 12–15 (1999), pp. 136–145. [Google Scholar]
  14. R. Zhang, C. Wu, A simulated annealing algorithm based on block properties for the job shop scheduling problem with total weighted tardiness objective, Computers & Operations Research 38 5 (2011) 854–867. [CrossRef] [MathSciNet] [Google Scholar]
  15. C.R. Reeves, A genetic algorithm for flowshop sequencing, Computers & Operations Research 22, 1 (1995) 5–13. [Google Scholar]
  16. R. Tavakkoli-Moghaddam, N. Safaei, F. Sassani, A memetic algorithm for the flexible flow line scheduling problem with processor blocking, Computers & Operations Research 36 (2009) 402–414. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Cheng, M. Gen, M. Tozawa, Minmax earliness/tardiness scheduling in identical parallel machine system using genetic algorithms, Computers & Industrial Engineering 29, 1–4 (1995) 513–517. [CrossRef] [Google Scholar]
  18. J. Yang, Minimizing total completion time in two-stage hybrid flow shop with dedicated machines, Computers & Operations Research 38, 7 (2011) 1045–1053. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Khalili, R. Tavakoli-Moghadam, A multi-objective electromagnetism algorithm for a bi-objective flowshop scheduling problem, Journal of Manufacturing Systems 31 (2012) 232–239. [CrossRef] [Google Scholar]
  20. C. Chen, R. Neppalli, Genetic algorithms applied to the continuous flow shop problem, Computers & Industrial Engineering 30, 4 (1996) 919–929. [CrossRef] [Google Scholar]
  21. T. Aldowaisan, A. Allahverdi, New heuristics for m-machine no-wait flowshop to minimize total completion time, Omega 32, 5 (2004) 345–352. [CrossRef] [Google Scholar]
  22. Q.K. Pan, M.F. Tasgetiren, Y.C. Liang, A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem, Computers & Operations Research 35 (2008) 2807–2839. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Fink, S. Voß, Solving the continuous flow-shop scheduling problem by metaheuristics, European Journal of Operational Research 151 (2003) 400–414. [CrossRef] [MathSciNet] [Google Scholar]
  24. S.J. Shyu, B.M.T. Lin, P.Y. Yin, Application of ant colony optimization for no-wait flowshop scheduling problem to minimize the total completion time, Computers & Industrial Engineering 47 (2004) 181–193. [CrossRef] [Google Scholar]
  25. J. Grabowski, J. Pempera, Some local search algorithms for no-wait flow-shop problem with makespan criterion, Computers & Operations Research 32 (2005) 2197–2212. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Khalili, An iterated local search algorithm for flexible flow lines with sequence dependent setup times to minimize total weighted completion, International Journal of Management Science and Engineering Management 7, 1 (2012) 63–66. [Google Scholar]
  27. M. Khalili, Multi-objective no-wait hybrid flowshop scheduling problem with transportation times, Journal International Journal of Computational Science and Engineering 7, 2 (2012) 147–153. [Google Scholar]
  28. J. Hurink, S. Knust, Makespan minimization for flow-shop problems with transportation times and a single robot, Discrete Applied Mathematics 112 (2001) 199–216. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Soukhal, A. Oulamara, P. Martineau, Complexity of flow shop scheduling problems with transportation constraints, European Journal of Operational Research 161 (2005) 32–41. [CrossRef] [MathSciNet] [Google Scholar]
  30. R. Ruiz, C.J. Garica-Diaz, C. Maroto, Considering scheduling and preventive maintenance in the flowshop sequencing problem, Computers & Operations Research 34 (2007) 3314–3330. [CrossRef] [Google Scholar]
  31. G. Schmidt, Scheduling with limited machine availability, European Journal of Operational Research 121 (2000) 1–15. [CrossRef] [MathSciNet] [Google Scholar]
  32. C.Y. Lee, Minimizing the makespan in the two-machine flowshop scheduling problem with an availability constraint, Operations Research Letters 20 (1997) 129–139. [Google Scholar]
  33. J. Blazewicz, J. Breit, P. Formanowicz, W. Kubiak, G. Schmidt, Heuristic algorithms for the two-machine flowshop problem with limited machine availability, Omega 29 (2001) 599–608. [CrossRef] [Google Scholar]
  34. J. Breit, A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint, Computers & Operations Research 33 (2006) 2143–2153. [CrossRef] [MathSciNet] [Google Scholar]
  35. H. Allaoui, A. Artiba, Integrating simulation and optimization to scheduling a hybrid flow shop with maintenance constraints, Computers & Industrial Engineering 47 (2004) 431–450. [CrossRef] [Google Scholar]
  36. V. Cerny, Thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm, JOTA 45 (1985) 41–51. [CrossRef] [MathSciNet] [Google Scholar]
  37. I. Birbil, S.C. Fang, An electromagnetism-like mechanism for global optimization, Journal of Global Optimization 25 (2003) 263–282. [CrossRef] [MathSciNet] [Google Scholar]
  38. D. Debels, B.D. Reyck, R. Leus, M. Vanhoucke, A hybrid scatter search/electromagnetism meta-heuristic for project scheduling, European Journal of Operational Research 169 (2006) 638–653. [CrossRef] [MathSciNet] [Google Scholar]
  39. E. Taillard, Benchmarks for basic scheduling problems, European Journal of Operational Research 64, 2 (1993) 278–285. [Google Scholar]
  40. R. Ruiz, A. Allahverdi, Some effective heuristics for no-wait flowshops with setup times to minimize total completion time, Annals of Operation Research 156 (2007) 143–171. [CrossRef] [Google Scholar]
  41. B. Naderi, M. Mousakhani, M. Khalili, Scheduling multi-objective open shop scheduling using a hybrid immune algorithm, The International Journal of Advanced Manufacturing Technology 66, 5–8 (2013) 895–905. [CrossRef] [Google Scholar]
  42. D.C. Montgomery, Design and Analysis of Experiments, Fifth edition, John Wiley & Sons, 2000. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.