Open Access
Issue
Manufacturing Rev.
Volume 1, 2014
Article Number 14
Number of page(s) 13
DOI https://doi.org/10.1051/mfreview/2014014
Published online 25 September 2014
  1. Y. Ding, L.M. Zhu, X.J. Zhang, H. Ding, A full-discretization method for prediction of milling stability, International Journal of Machine Tools and Manufacture 50 (2010) 502–509. [CrossRef] [Google Scholar]
  2. G. Quintana, J. Ciurana, Chatter in machining processes: a review, International Journal of Machine Tools and Manufacture 51 (2011) 363–376. [CrossRef] [Google Scholar]
  3. J.V. Le Lan, A. Marty, J.F. Debongnie, CIRP (Eds.), A stability diagram computation method for milling adapted to automotive industry, in: Proceedings of the CIRP Second International Conference on High Performance Cutting, Vancouver, British Columbia, Canada, 12–13 June, 2006. [Google Scholar]
  4. T. Insperger, Stability analysis of periodic delay-differential equations modelling machine tool chatter, PhD dissertation, Budapest University of Technology and Economics, 2002. [Google Scholar]
  5. T. Insperger, G. Stepan, Semi-discretization method for delayed systems, International Journal for Numerical Methods in Engineering 55 (2002) 503–518. [CrossRef] [MathSciNet] [Google Scholar]
  6. T. Insperger, G. Stepan, Updated semi-discretization method for periodic delay differential with discrete delay, International Journal for Numerical Methods in Engineering 61 (2004) 117–141. [CrossRef] [MathSciNet] [Google Scholar]
  7. T. Insperger, G. Stepan, J. Turi, On the higher-order semi-discretizations for periodic delayed systems, Journal of Sound and Vibration 313 (2008) 334–341. [CrossRef] [Google Scholar]
  8. C. Henninger, P. Eberhard, Improving the computational efficiency and accuracy of the semi-discretization method for periodic delay-differential equations, European Journal of Mechanics – A/Solids 27 (2008) 975–985. [CrossRef] [Google Scholar]
  9. T. Insperger, Full-discretization and semi-discretization for milling stability prediction: some comments, International Journal of Machine Tools and Manufacture 50 (2010) 658–662. [CrossRef] [Google Scholar]
  10. Y. Ding, L. Zhu, X. Zhang, H. Ding, Second-order full-discretization method for milling stability prediction, International Journal of Machine Tools and Manufacture 50 (2010) 926–932. [CrossRef] [Google Scholar]
  11. Q. Quo, Y. Sun, Y. Jiang, On the accurate calculation of milling stability limits using third-order full-discretization method, International Journal of Machine Tools and Manufacture 62 (2012) 61–66. [CrossRef] [Google Scholar]
  12. Y. Liu, D. Zhang, W. Baohai, An efficient full-discretization method for prediction of milling stability, International Journal of Machine Tools and Manufacture 63 (2012) 44–48. [CrossRef] [Google Scholar]
  13. Y. Ding, L.M. Zhu, X.J. Zhang, H. Ding, Numerical integration method for prediction of milling stability, Journal of Manufacturing Science and Engineering 133 (2011) 031005–031009. [CrossRef] [Google Scholar]
  14. C.G. Ozoegwu, Chatter of plastic milling CNC machine: master of engineering thesis, Nnamdi Azikiwe University Awka, 2011. [Google Scholar]
  15. P.V. Bayly, T.L. Schmitz, G. Stepan, B.P. Mann, D.A. Peters, T. Insperger, Effects of radial immersion and cutting direction on chatter instability in end-milling, in: Proceedings of IMECE’02 2002 ASME International Mechanical Engineering Conference & Exhibition, New Orleans, Louisiana, November 17–22, 2002. [Google Scholar]
  16. E. Butcher, B. Mann, Stability analysis and control of linear periodic delayed systems using Chebyshev and Temporal Finite Element Methods, http://mae.nmsu.edu/faculty/eab/bookchapter_final.pdf [Google Scholar]
  17. C.D. Meyer, Matrix analysis and applied linear algebra, SIAM, Philadelphia, 2000. [CrossRef] [Google Scholar]
  18. C.G. Ozoegwu, Least squares approximated stability boundaries of milling process, International Journal of Machine Tools and Manufacture 79 (2014) 24–30. [CrossRef] [Google Scholar]
  19. R. Sridhar, R.E. Hohn, G.W. Long, A stability algorithm for the general milling process, Transactions of the ASME Journal of Engineering for Industry 90 (1968) 330–334. [CrossRef] [Google Scholar]
  20. I. Minis, T. Yanushevsky, R. Tembo, R. Hocken, Analysis of linear and nonlinear chatter in milling, Annals of the CIRP 39 (1990) 459–462. [CrossRef] [Google Scholar]
  21. E. Budak, The mechanics and dynamics of milling thin-walled structures, Ph.D Dissertation, University of British Columbia, 1994. [Google Scholar]
  22. Y. Altintas, E. Budak, Analytical prediction of stability lobes in milling, Annals of the CIRP 44 (1995) 357–362. [Google Scholar]
  23. E. Budak, Y. Altintas, Analytical prediction of chatter stability in milling – part I: general formulation, part II: application to common milling systems, Transactions of the ASME Journal of Dynamic Systems, Measurement and Control 20 (1998) 22–36. [Google Scholar]
  24. S.D. Merdol, Y. Altintas, Multi frequency solution of chatter stability for low immersion milling, Journal of Manufacturing Science and Engineering 126 (2004) 459–467. [CrossRef] [Google Scholar]
  25. C.G. Ozoegwu, S.N. Omenyi, S.M. Ofochebe, C.H. Achebe, Comparing up and down milling modes of end-milling using temporal finite element analysis, Applied Mathematics 3 (2013) 1–11. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.