Open Access
Manufacturing Rev.
Volume 1, 2014
Article Number 7
Number of page(s) 16
Published online 12 August 2014
  1. R.W. Ivester, et al., Assessment of machining models: Progress report, Mach. Sci. Technol. 4 (2000) 511–538. [CrossRef] [Google Scholar]
  2. J. Leopold, Proceeding’s of the 3rd Int. Workshop on Modelling of Machining Operations, Sydney, 2000. [Google Scholar]
  3. H. Weber, T.N. Loladze, Grundlagen des Spanens, VEB Verlag Technik, Berlin, 1986. [Google Scholar]
  4. I. Time, Soprotivlenie Metallov i Dereva Rezanyu, St. Petersburg, 1870. [Google Scholar]
  5. M.W. Merchant, Mechanics of metal cutting process. I. Orthogonal cutting and a type 2 chip, J. Appl. Phys. 16 (1945) 267–275. [Google Scholar]
  6. H. Tresca, Mémoire sur le rabotage des métaux, Paris, 1877. [Google Scholar]
  7. A. Mallock, The action of cutting tools, Proc. Roy. Soc. London 33 (1881) 127–139. [Google Scholar]
  8. K.A. Svorykin, Rabota i Usilie Neobkhodimyya dlya Oteleniiya Metallichcskikh Struzhek, Moscow, 1883. [Google Scholar]
  9. K. Zuse,, 1938. [Google Scholar]
  10. O.C. Zienkiewicz, Y.K. Cheung, The Finite Element Method in Structural Mechanics, McGraw-Hill, London, 1967. [Google Scholar]
  11. H. Weber, et al., Wiss. Schriftenreihe der TH Karl-Marx-Stadt, 1986, 11, ISSN 0323–6374. [Google Scholar]
  12. J. Leopold, U. Semmler, K. Hoyer, Applicability, robustness and stability of the Finite Element analysis in metal cutting operations, Proc. CIRP Workshop on Modelling of Machining, Nantes, 1999. [Google Scholar]
  13. J. Leopold, Wiss. Schriftenreihe der TH Karl-Marx-Stadt, 1, 1980, ISSN 0323-6374. [Google Scholar]
  14. H. Weber, J. Leopold, Wiss. Schriftenreihe der TH Karl-Marx-Stadt, 1981, ISSN 0323-6374. [Google Scholar]
  15. H. Weber, J. Leopold, Acta Technica Academia Scientiarum Hungaricae 86 (1978) 287–300. [Google Scholar]
  16. G.R. Johnson, W.H. Cook, Proc. of the 7th International Symposium on Ballistics, Netherlands, 1983, pp. 541–547. [Google Scholar]
  17. F.J. Zerilli, R.W. Armstrong, Dislocation-mechanics-based constitutive relations for material dynamics calculations, J. Appl. Phys. 61 (1987) 1816–1825. [CrossRef] [Google Scholar]
  18. E. Usui, K. Hoshi, Slip-line fields in metal machining which involve centered fans, Proc. of Int. Production Engineering Research Conference, Pittsburgh, ASME, 1963, pp. 61–71. [Google Scholar]
  19. P.J. Arrazola, T. Özel, Investigations on the effects of friction modeling in finite element simulation of machining, Int. J. Mech. Sci. 52 (2010) 31–42. [CrossRef] [Google Scholar]
  20. P.J. Arrazola, et al., Recent advances in modelling of metal machining processes, CIRP Ann. – Manuf. Technol., 2013. [Google Scholar]
  21. [Google Scholar]
  22. J. Leopold, et al., 8th Int. Workshop on Computational Mechanics of Materials, Stuttgart, October, 1998, pp. 8–9. [Google Scholar]
  23. J. Leopold, M. Meisel, 9th Int. Workshop Computational Mechanics and Computer Aided Design of Materials, Berlin, October, 1999, pp. 4–5. [Google Scholar]
  24. J. Leopold, M. Meisel, Comput. Mater. Sci. 19 (2000) 205–212. [CrossRef] [Google Scholar]
  25. J. Leopold, et al., Surf. Coat. Technol. 142–144 (2001) 916–922. [CrossRef] [Google Scholar]
  26. J. Leopold, M. Meisel, Report on HPS-CSS (HPS-CSS has been supported by the ESPRIT HPCN programme from the European Commission), 2001 (unpublished). [Google Scholar]
  27. H. Oosterling, et al., Low friction, M0S2-composite coated cutting tools for dry, high speed machining of steel; LoFriCo Final technical report – BRST-CT98-5361, 2001 (unpublished). [Google Scholar]
  28. J. Leopold, Mechanical and thermal behaviour of coating-substrate-systems investigated with parallel FEM, Proc. Int. Conf. on Metallurgical Coatings and Thin Films – ICMCTF 2002, San Diego/USA, April 22–26, 2002. [Google Scholar]
  29. L.C. Cho, C. Abhijit, A boundary element method analysis of the thermal aspects of metal cutting processes, Trans. ASME, J. Eng. Ind. 113 (1991) 311–319. [Google Scholar]
  30. E.P. Stephan, Coupling of boundary methods and finite element methods, E. Stein, R. de Borst, T.J.R. Hughes (Eds.), Encyclopedia of Computational Mechanics, Chapter 13: Fundamentals, Vol. 1, John Wiley & Sons, 2004. [Google Scholar]
  31. J. Kuhnert, A. Mattes, J. Leopold, Internal report, FhG IWU; FhG ITWS and TU Berlin, 2005. [Google Scholar]
  32. J. Kuhnert, A. Tramecon, P. Ullrich, Proc. of the EUROPAM Conf., 2000. [Google Scholar]
  33. S.S. Akarca, W.J. Altenhof, A.T. Alpas, Proceedings of the 10th International LS-DYNA Users Conference, 2008. [Google Scholar]
  34. E. Uhlmann, et al., Proc. of the CIRP Conf. on Modelling of Machining Operations, Donostia-San Sebastian, pp. 145–151 (2009). [Google Scholar]
  35. V. Gyliene, V. Ostasevicus, M. Ubartas, Proc. of the 9th European LS-DYNA Conf. 2013 and Proceedings of the 12th CIRP Conference on Modelling of Machining Operations, 145–151, 2009. [Google Scholar]
  36. C. Espinosa, et al., Proc. of the 10th Int. LS-DYNA Users Conference, 2008. [Google Scholar]
  37. N. Ikawa, et al., Ann. CIRP, 40 (1991) 551–554. [CrossRef] [Google Scholar]
  38. S. Shimada, et al., Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation, Ann. CIRP 42 (1993) 91–94. [CrossRef] [Google Scholar]
  39. R. Rentsch, I. Inasaki, Ann. CIRP 44 (1995) 295–298. [CrossRef] [Google Scholar]
  40. H. Tanaka, S. Shimada, L. Anthony, Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation, Ann. CIRP 56 (2007) 53–56. [CrossRef] [Google Scholar]
  41. J. Leopold, Werkzeuge für die Hochgeschwindigkeitsbearbeitung, HANSER, 1999. [Google Scholar]
  42. J. Leopold, et al., Fliehkraftverhalten von Feinbohrwerkzeugen bei hohen Drehzahlen, VDI-Z III (1996) 48–50. [Google Scholar]
  43. J. Leopold, et al., Festigkeits- und Verformungsanalyse von Werkzeugen für die Hochgeschwindigkeitsbearbeitung, DIMA 12 (1997) 33–39. [Google Scholar]
  44. J. Leopold, G. Schmidt, A. Kieninger, FEM-Analyse modular aufgebauter HSC-Werkzeuge mit 3-D einstellbaren Schneiden, DIMA 3 (2000). [Google Scholar]
  45. [Google Scholar]
  46. [Google Scholar]
  47. [Google Scholar]
  48. D.A. Dornfeld, S.L. Ko, A study on burr formation mechanism, Trans. ASME. J. Eng. Mat. Technol. 113 (1991) 75–87. [CrossRef] [Google Scholar]
  49. J. Leopold, Prediction and verification of models of burr formation, Int. J. Mater. Product Technol. 35 (2009) 89–117. [CrossRef] [Google Scholar]
  50. A. Freitag, C. Sohrmann, J. Leopold, Simulation of burr formation, Proc. of the 8th CIRP Int. Workshop on Modeling and Machining Operations (2005) 641–650. [Google Scholar]
  51. A. Stoll, J. Leopold, R. Neugebauer, Hybrid methods for analysing burr formation in 2D-orthogonal cutting, Proc. of the 9th CIRP Int. Workshop on Modelling of Machining Operations, Bled, Slovenia, May 11–12, 2006. [Google Scholar]
  52. J. Leopold, G. Schmidt, K. Hoyer, A. Stoll, Modelling and simulation of burr formation – State-of-the-art and future trends, Proc. of the 8th CIRP Int. Workshop on Modelling of Machining Operations, Chemnitz, Germany, May 11–12, 2005. [Google Scholar]
  53. J. Regel, A. Stoll, J. Leopold, Numerical analysis of crack propagation during the burr formation process of metals, Int. J. Machining and Machinability of Materials, 54–68. [Google Scholar]
  54. A. Stoll, N. Ahmed, A.V. Mitrofanov, V. Silberschmidt, J. Leopold, Influence of ultrasonically assisted cutting on burr formation, Proc. of the 9th CIRP Int. Workshop on Modelling of Machining Operations, Bled, Slovenia, May 11–12, 2006. [Google Scholar]
  55. M. Dix, R. Leopold, Investigations on the influence of local material properties of burr formation, Proc. of the 10th CIRP Int. Workshop on Modeling of Machining Operations, Reggio Calabria, Italy, August 27–28, 2007. [Google Scholar]
  56. J. Leopold, A. Mucha, Non-stick coating for clean manufacturing – cleanability in high-performance cutting, Proc. of the Conf. NANOFAIR, Karlsruhe, 2006. [Google Scholar]
  57. J. Leopold, R. Neugebauer, M. Löffler, M. Schwenck, P. Hänle, Influence of coating-substrate-systems on chip and burr formation in precision manufacturing, Proc. IMechE Part B: J. Eng. Manuf., 219 (2005) 1–8. [Google Scholar]
  58. J. Leopold, T. Matsumura, Modelling of burr formation of coated-cutting tools for clean manufacturing, Proc. of the 5th Int. Conf. on Leading Edge Manufacturing in 21st Century – LEM21, Osaka, 2009. [Google Scholar]
  59. T. Matsumura, J. Leopold, Simulation of drilling process for control of burr formation, Journal of Advanced Mechanical Design, Systems and Manufacturing 4 (2010) 966–975. [CrossRef] [Google Scholar]
  60. S.Y. Hong, I. Markus, W. Jeong, New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V, Int. J. Mach. Tools Manuf. 41 (2001) 2245–2260. [Google Scholar]
  61. R. Ghosh, Z. Zurecki, J.H. Frey, Cryogenic machining with brittle tools and effects on tool life, Proc. of IMECE’03, Paper No.: ICMECE2003-42232. [Google Scholar]
  62. M. Dhananchezian, M. Pradeep Kumar, A. Rajadurai, Experimental investigation of cryogenic cooling by liquid nitrogen in the orthogonal machining process, International Journal of Recent Trends in Engineering 1 (May 2009) 55–59. [Google Scholar]
  63. S.C. Jun, Lubrication effect of liquid nitrogen in cryogenic machining friction on the tool-chip interface, Journal of Mechanic, Science and Technology (KSME Int. J.) 19 (2005) 936–946. [Google Scholar]
  64. F. Pušavec, A. Stoić, J. Kopač, The role of cryogenics in machining processes, Technical Gazette 16 (2009) 3–10. [Google Scholar]
  65. F. Pušavec, J. Kopač, Sustainability assessment: Cryogenic machining of inconel 718, Strojniški vestnik, J. Mech. Eng. 57 (2011) 637–647. [CrossRef] [Google Scholar]
  66. T. Lu, O.W. Dillon, Jr., I.S. Jawahir, A thermal analysis framework for cryogenic machining and its contribution to product and process sustainability, Proc. of the 11th Global Conference on Sustainable Manufacturing – Innovative Solutions, Berlin, pp. 262–267, 2013. [Google Scholar]
  67. [Google Scholar]
  68. J. Leopold, W. Arnold, H. Gründemann, Ein integriertes Gleitlinien-Finite-Elemente-Modell zur Spannungsberechnung vor der Scherlinie, Wiss. Z. d. Techn. Hochschule Karl-Marx-Stadt, 21 (1979) 185–189. [Google Scholar]
  69. G. Spur, J. Leopold, G. Schmidt, Ermittlung des Spannungs-, Verformungs- und Temperaturverhaltens spanned bearbeiteter Werkstücke mit Hilfe der Visioplastizität und der Finiten Elemente Methode, Proceedings of the DFG Priority Prpogramm “Wirkflächenreibung bei inelastischer Verformung metallischer Werkstoffe, Hannover, 1995. [Google Scholar]
  70. J. Leopold, et al., Wiss. Z. d. Techn. Hochschule Karl-Marx-Stadt 21 (1979) 185–189. [Google Scholar]
  71. J. Leopold, FEM modelling and simulation of 3D-chip formation, Proc. of the CIRP Int. Workshop on Modelling of Machining Operations, Atlanta, 1998. [Google Scholar]
  72. J. Leopold, G. Schmidt, Proc. of the second CIRP international workshop on modelling of machining operations, Nantes, January 25–26, 1999. [Google Scholar]
  73. J. Leopold, Proc. of the 3rd International Workshop on Modelling of Machining Operations, Sydney, 2000. [Google Scholar]
  74. X.P. Li, K. Lynkaran, A.Y.C. Nee, A hybrid machining simulator based on predictive machining theory and neuronal network modelling, Journal of Material Processing Technology 89–90 (1999) 224–230. [Google Scholar]
  75. M. Klärner, J. Leopold, L. Kroll, Analysis of clamping within a fixing system, Lecture Notes in Computer Science 5315 (2008) 356–367. [CrossRef] [Google Scholar]
  76. J. Leopold, et al., Investigations to new fixturing principles for aerospace structures, Proc. of the Int. Conf. on Applied Production Technology, Bremen, 2007. [Google Scholar]
  77. J. Leopold, et al., Interaction between machining and new fixturing principles for aerospace structures, Proc. of ESAFORM, 2008. [Google Scholar]
  78. AFFIX consortium. Affix – aligning, holding and fixing flexible and difficult to handle components,, 2006. [Google Scholar]
  79. J. Leopold, et al., High performance cutting with optimized cutting tools, Proc. of the 4th CIRP Int. Conf. on High Performance Cutting, Gifu, 201. [Google Scholar]
  80. M. Sato, K. Kato, K. Tuchiya, Effect of material and anisotropy upon the cutting mechanism, Trans. JIM. 9 (1978) 530–536. [Google Scholar]
  81. W. König, N. Spenrath, The influence of the crystallographic structure of the substrate material on surface quality and cutting forces in micromachining, Proc. 6th Int. Precision Engng. Seminar, Braunschweig, Germany, pp. 141, 1991. [Google Scholar]
  82. J.D. Kim, D.S. Kim, Theoretical analysis of micro-cutting characteristics in ultra-precision machining, J. Mater. Process. Technol. 49 (1995) 387–398. [CrossRef] [Google Scholar]
  83. W.B. Lee, C.F. Cheung, S. To, Characteristics of micro-cutting force variation in ultraprecision diamond turning, Mater. Manuf. Process. 16 (2001) 177–193. [CrossRef] [Google Scholar]
  84. W.B. Lee, C.F. Cheung, S. To, A microplasticity analysis of micro-cutting force variation in ultra-precision diamond turning, Transactions of the ASME 124, May (2002), 170–177. [Google Scholar]
  85. A. Simoneau, E. Ng, M.A. Elbestawi, Grain size and orientation effects when microcutting AISI 1045 steel, CIRP Ann. 56 (2007) 57–60. [CrossRef] [Google Scholar]
  86. V. Schulze, J. Michna, F. Zanger, R. Pabst, Modelling the process-induced modifications of the microstructure of work piece surface zones in cutting processes, Advanced Materials Research 223 (2011) 371–380. [CrossRef] [Google Scholar]
  87. M. Abouridouane, F. Klocke, D. Lung, O. Adams, A new 3D multiphase FE model for micro cutting ferritic-pearlitic carbon steels, CIRP Ann. 61 (2012) 71–74. [CrossRef] [Google Scholar]
  88. J.W. Erben, Mikrovisioplastische Untersuchungen an ein- und zweiphasigen metallischen Werkstoffen als Bindeglied zur numerischen Modellierung der Mikrostruktur, Abschlussbericht DFG Le746/17, 1999. [Google Scholar]
  89. G. Schmidt, R. Leopold, R. Neugebauer, FE-simulation of nonlinear dynamical effects in coating-substrate-systems, 4th Int. Symposium: Investigations of Non-Linear Dynamic Effects in Production Systems, Chemnitz, Germany, April 8–9, 2003. [Google Scholar]
  90. FP7 project, “Multiscale Modelling for Multilayered Surface Systems” (M3-2S), Grant No: NMP3- SL-2008- 213600. [Google Scholar]
  91. [Google Scholar]
  92. J. Leopold, et al., An advanced adaptive finite element code for coating-substrate simulation, J. Multiscale Modelling 03 (2011) 91. [CrossRef] [Google Scholar]
  93. A.V. Byakova, J. Leopold, Effect of stress state on failure resistance of brittle high-strength coatings, Unpublished report, 1996. [Google Scholar]
  94. J. Leopold, R. Wohlgemuth, D. Shan, Y. Qin, Modelling and simulation of coating-substrate-systems: state-of-the-art and future trends, Proc. of the Conference “THEA Coatings”, Thessaloniki, 2011. [Google Scholar]
  95. J. Leopold, R. Wohlgemuth, J. Lin, S.V. Subramanian, T. Matsumura, New concepts for micro-structural simulations of coating-substrate-systems, Proc. of the 12th CIRP Conf. on Modelling of Machining Operations, Donostia, San Sebastián, Spain, 1 (2009) 117–124. [Google Scholar]
  96. S. Wang, J. Lin, D. Balint, Modelling of failure features for TiN Coatings with different substrate materials, J. Multiscale Modelling 03 (2011) 49. [CrossRef] [Google Scholar]
  97. D.Q. Qin, et al., Prediction of residual stress in multilayered coatings with a linear elastic model incorporating density functional theory calculations, J. Multiscale Modelling 03 (2011) 65. [CrossRef] [Google Scholar]
  98. R. Neugebauer, R. Wertheim, U. Semmler, The atomic finite element method as a bridge between molecular dynamics and continuum mechanics, J. Multiscale Modelling 03 (2011) 39. [CrossRef] [Google Scholar]
  99. J. Leopold, H. Gründemann, W. Totzauer, Kontinuumsmechanische Methoden zur Modellierung des Spanbildungsprozesses, Sitzungsberichte der AdW der DDR, 12N/1979, 51–81. [Google Scholar]
  100. C.A. Luttervelt, et al., Present situation and future trends in modelling of machining operations, CIRP Ann. 47 (1998) 587–626. [CrossRef] [Google Scholar]
  101. E.H. Lee, B.W. Shaffer, The theory of plasticity applied to a problem of machining, Transaction of ASME 73 (1951) 405–413. [Google Scholar]
  102. M.C. Shaw, Metal cutting principles. 3rd ed., MIT Press, Cambridge, 1954. [Google Scholar]
  103. W.B. Palmer, P.L.B. Oxley, Mechanics of orthogonal machining, Proceedings of the Institute of Mechanical Engineers 173 (1959) 623–654. [CrossRef] [Google Scholar]
  104. H. Weber, Mechanik der Spanbildung, Wiss. Z. der TH Karl-Marx-Stadt 11 (1969) 597–629. [Google Scholar]
  105. M.G. Stevenson, P.L.B. Oxley, An experimental investigations of the influence of strain rate and temperatures on the flow stress properties of a low carbon steel using machining test, Proc. Inst. Mech. Eng. 185 (1970) 741–754. [CrossRef] [Google Scholar]
  106. R. Makino, E. Usui, An analysis of stress and strain distributions in the plastic region of slow speed, steady-state machining, Bull. Japan Soc. of Prec. Engg. 7 (1973) 43–50. [Google Scholar]
  107. N. Fang, I.S. Jawahir, An analytical predictive model and experimental validation for machining with grooved tools incorporating effects of strains, strain-rates and temperature, CIRP Annals – Manufacturing Technology 51 (2002) 83–87. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.