Open Access
Issue
Manufacturing Rev.
Volume 1, 2014
Article Number 11
Number of page(s) 19
DOI https://doi.org/10.1051/mfreview/2014009
Published online 08 September 2014
  1. R. Naseri, R. Davoodi, in Proceedings of the 3rd International Conference on Information and Financial Engineering, Shanghai, 2011, JOEBM (Ed.). [Google Scholar]
  2. A. Busnaina et al., J. Nanopart. Res. 15 (2013) 1984. [CrossRef] [Google Scholar]
  3. W. Luther et al., in Growth market nanotechnology: an analysis of technology and innovation, N. Malanowski, T. Heimer, W. Luther, M. Werner (Eds.), Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, 2007. [Google Scholar]
  4. European Commission, Community Research and Development Information, [http://cordis.europa.eu/]. [Google Scholar]
  5. A. Gurav et al., Aerosol Sci. Technol. 19 (1993) 04. [CrossRef] [Google Scholar]
  6. H.K. Kammler et al., AIChE J. 47 (2001) 07. [CrossRef] [Google Scholar]
  7. T.T. Kodas, M.J. Hampden-Smith, Aerosol processing of materials. 6th ed., Wiley-VCH, New York, 1999. [Google Scholar]
  8. W. Luther, in Industrial application of nanomaterials-chances and risks, W. Luther (Ed.), Future Technologies Division, Dusseldorf, 2004. [Google Scholar]
  9. A. Gohier et al., Appl. Surf. Sci. 258 (2012) 6024. [CrossRef] [Google Scholar]
  10. A.H. Pfund, Phys. Rev. 35 (1930) 1434. [Google Scholar]
  11. G. Skandan, A. Singhal, in Nanomaterials handbook, Y. Gogotsi (Ed.), Taylor & Francis Group, Florida, 2006. [Google Scholar]
  12. M.T. Swihart, Curr. Opin. Colloid Interface Sci. 8 (2003) 127. [CrossRef] [Google Scholar]
  13. BUONAPART-E [www.buonapart-e.eu]. [Google Scholar]
  14. T. Pfeiffer, J. Feng, A. Schmidt-Ott, Adv. Powder Tech. 25 (2014) 01. [CrossRef] [Google Scholar]
  15. J. Wei, F.E. Kruis, Chem. Eng. Sci. 104 (2013) 451. [CrossRef] [Google Scholar]
  16. V. Dudoitis et al., Lith. J. Phys. 51 (2011) 03. [CrossRef] [Google Scholar]
  17. P. Sudarsanam, B.M. Reddy, in Nanotechnology commercialization, T. Tsuzuki (Ed.), Pan Stanford Publishing, Singapore, 2013. [Google Scholar]
  18. S. Buzby, S. Franklin, S. Shah, Synthesis, properties, and applications of oxide nanomaterials, Wiley, Canada, 2007. [Google Scholar]
  19. D. Vollath, K.E. Sickafus, NanoStruct. Mater. 1 (1992) 427. [CrossRef] [Google Scholar]
  20. D. Vollath, Mater. Res. Soc. Symp. Proc. 347 (1994) 629. [CrossRef] [Google Scholar]
  21. D. Vollath, Nanomaterials: an introduction to synthesis, properties and applications, Wiley-VCH, Weinheim, 2008. [Google Scholar]
  22. M.L. Hitchman, K.F. Jensen, Chemical vapour deposition: principles and applications, Academic Press, New York, 1993. [Google Scholar]
  23. M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. 10 (2010) 3739. [CrossRef] [Google Scholar]
  24. Y. Xu, Y. Xiu-Tian, Chemical vapour deposition: an integrated engineering design for advanced materials series, Springer, London, 2010. [CrossRef] [Google Scholar]
  25. S.M. Watson, K.S. Coleman, A.K. Chakraborty, ACS Nano 2 (2008) 04. [CrossRef] [Google Scholar]
  26. S.E. Iyuke et al., Nanotechnology 20 (2009) 375602. [CrossRef] [Google Scholar]
  27. K.V. Prashant, D. Meisel, Stud. Surf. Sci. Catal. 103 (1997) 237. [CrossRef] [Google Scholar]
  28. J.H. Fendler, Korean J. Chem. Eng. 18 (2001) 1. [CrossRef] [Google Scholar]
  29. K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology, William Andrew Publishing, New York, 2001. [Google Scholar]
  30. M. Rajamathi, R. Seshadr, Curr. Opin. Solid State Mater. Sci. 6 (2002). [Google Scholar]
  31. A. Addamiano, J. Electrochem. Soc. 108 (1961) 11. [CrossRef] [Google Scholar]
  32. X.Z. Zhao et al., Nature 385 (1997) 5. [CrossRef] [Google Scholar]
  33. C.N.R. Rao, A. Mueller, A.K. Cheetham, The chemistry of nanomaterials: synthesis, properties and applications, Wiley-VCH, Weinheim, 2004. [CrossRef] [Google Scholar]
  34. Shyman Project [www.shyman.eu]. [Google Scholar]
  35. F. Mato et al., in Proceedings of the III Iberoamerican Conference on Supercritical Fluids, Colombia, 2013. [Google Scholar]
  36. T.J. Mason, Sonochemistry, Royal Society of Chemistry, Cambridge, 1990. [Google Scholar]
  37. M. Esmaeili-Zare, M. Salavati-Niasari, in Proceedings of the International Conference Nanomaterials: Applications and Properties, Ukraine, 2013 (NAP, 2013), pp. 1–3. [Google Scholar]
  38. S.M. Zhou, Y.S. Feng, L.D. Zhang, Mater. Lett. 57 (2003) 19. [Google Scholar]
  39. H. Fect, in Nanomaterials: synthesis, properties and applications, A.S. Edelstein, R.C. Cammaratra (Eds.), Taylor & Francis, Washington, 1996. [Google Scholar]
  40. L.W. Johnson, Prog. Mater. Sci. 30 (1986) 02. [CrossRef] [Google Scholar]
  41. M.S. El-Eskandarany et al., Mater. Sci. Forum 88–90 (1992). [Google Scholar]
  42. A. Calka, Appl. Phys. Lett. 59 (1991) 13. [CrossRef] [Google Scholar]
  43. A. Calka, J.S. Williams, Mater. Sci. 88–90 (1992) 801. [Google Scholar]
  44. W.E. Kuhn et al., Powder metallurgy, 2nd ed., American Society of Metals, USA, 1998. [Google Scholar]
  45. F. Cerrina, C. Marrian, MRS Bull. 21 (1996). [Google Scholar]
  46. U. Heiz, W.D. Schneider, Crit. Rev. Solid State Mater. Sci. 26 (2001). [Google Scholar]
  47. J.M. Gibson, Phys. Today 50 (1997) 56. [CrossRef] [Google Scholar]
  48. S. Matsui, Y. Ochiai, Nanothechnology 7 (1996) 03. [Google Scholar]
  49. S.H. Hong, J. Zhu, C.A. Mirkin, Science 286 (1999) 5439. [Google Scholar]
  50. J.A. Dagata, Science 270 (1995) 5242. [CrossRef] [Google Scholar]
  51. M.D. Levenson et al., Solid State Technol. 38 (1995) 9. [CrossRef] [Google Scholar]
  52. P.N. Dunn, Solid State Technol. 37 (1994) 49. [Google Scholar]
  53. C. Mirkin, M. Tuominen, Nanotechnology research directions for societal needs in 2020, Springer, The Netherlands, 2011. [Google Scholar]
  54. J. Zha, H. Roggendorf, in Sol-gel science, C.J. Brinker, G.W. Sherer (Eds.), Academic Press, New York, 1990. [Google Scholar]
  55. N. Carbrera, N.F. Mott, Rep. Prog. Phys. 12 (1949) 163. [CrossRef] [Google Scholar]
  56. R.D. Piner, C.A. Mirkin, Langmuir 13 (1997) 6864. [CrossRef] [Google Scholar]
  57. Y. Li, B.N. Maynor, J. Liu, J. Am. Chem. Soc. 123 (2001) 2105. [CrossRef] [Google Scholar]
  58. L.M. Demers et al., Angew. Chem. Int. Ed. Engl. 40 (2001) 3071. [CrossRef] [Google Scholar]
  59. Nanoparticle.com, Particle suppliers and standards [http://nano-particles.org/standards/#Suppliers]; [http://nanoparticles.org/standards/]. [Google Scholar]
  60. H.W. Kroto et al., Nature 318 (1985) 162. [NASA ADS] [CrossRef] [Google Scholar]
  61. G. Andrievsky, V. Klochkov, L. Derevyanchenko, Fuller. Nanotub. Carbon Nanostructures 13 (2005) 04. [CrossRef] [Google Scholar]
  62. K. Kikuchi et al., Chem. Phys. Lett. 188 (1992) 03–04. [CrossRef] [Google Scholar]
  63. A. Mateo-Alonso, N. Tagmatarchis, M. Prato, Nanomaterials handbook, Taylor & Francis Group, Florida, 2006. [Google Scholar]
  64. L. Lamb, D. Huffman, J. Phys. Chem. Solids 54 (1993) 12. [CrossRef] [Google Scholar]
  65. W. Krätschmer et al., Nature 347 (1990) 345. [Google Scholar]
  66. J. Howard et al., Nature 352 (1991). [Google Scholar]
  67. C. Lieber, C. Chen, Solid State Phys. 48 (1994) 109. [Google Scholar]
  68. A.A. Bogdanov, D. Deininger, G. Dyuzhev, Tech. Phys. 45 (2000) 521. [CrossRef] [Google Scholar]
  69. H. Murayama et al., Fuller. Nanotub. Carbon Nanostructures 12 (2004) 01–02. [CrossRef] [Google Scholar]
  70. H. Takehara et al., Carbon 43 (2005) 311. [CrossRef] [Google Scholar]
  71. E. Ulloa, EEE-5425 1 (2013) [http://web.eng.fiu.edu/~vlassov/EEE-5425/Ulloa-Fullerenes.pdf]. [Google Scholar]
  72. V. Cebolla, L.V.J. Membrado, in Encyclopedia of separation science, I.D. Wilson (Ed.), Academic Press, Oxford, 2000. [Google Scholar]
  73. V. Postnov et al., Nanosyst. Phys. Chem. Math. 4 (2013) 05. [Google Scholar]
  74. H. Keypour, M. Noroozi, A. Rashid, J. Nanostructure Chem. 3 (2013) 45. [CrossRef] [Google Scholar]
  75. Nanomaterial Suppliers – Fullerenes [www.nanowerk.com/nanotechnology/nanomaterial/suppliers_plist.php?subcat1=ful]. [Google Scholar]
  76. C. Singh, R. Sukhdev, Opt. Eng. 43 (2004) 02. [Google Scholar]
  77. T. Otsubo, Y. Aso, K. Takimiya, Pure Appl. Chem. 77 (2005) 12. [CrossRef] [Google Scholar]
  78. F. Diederich, Pure Appl. Chem. 77 (2005) 11. [CrossRef] [Google Scholar]
  79. B.K.B. Teo et al., in Encyclopedia of nanoscience and nanotechnology, H. Singh Nalwavol (Ed.), USA, 2003. [Google Scholar]
  80. A.R. Murray et al., Part. Fibre Toxicol. 9 (2012) 10. [CrossRef] [Google Scholar]
  81. N. Tagmatarchis, M. Prato, J. Mater. Chem. 14 (2004) 437. [CrossRef] [Google Scholar]
  82. K.P. De Jong, J.W. Geus, Cat. Rev. 42 (2000) 04. [Google Scholar]
  83. S. Iijima, Nature 354 (1991) 56. [NASA ADS] [CrossRef] [Google Scholar]
  84. E. Pop et al., Nano Lett. 6 (2006) 01. [CrossRef] [Google Scholar]
  85. M.F. De Volder et al., Science 339 (2013) 535. [CrossRef] [Google Scholar]
  86. R. Ravindra, R.B. Badekai, Nanomat. Nanotechnol. 2 (2012) 05. [Google Scholar]
  87. Q. Zhang et al., Chem. Sus. Chem. 4 (2011) 1745. [CrossRef] [Google Scholar]
  88. C. See, A. Harris, Ind. Eng. Chem. Res. 46 (2007) 04. [Google Scholar]
  89. J. Huang et al., Chin. Sci. Bull. 57 (2012) 02–03. [Google Scholar]
  90. BCC Research, Global Markets and Technologies for Carbon Nanotubes Report No. NAN024E, 2012 [Google Scholar]
  91. S. Bachilo et al., J. Am. Chem. Soc. 125 (2003) 37. [CrossRef] [PubMed] [Google Scholar]
  92. Y. Wang et al., Nano Lett. 5 (2005) 06. [Google Scholar]
  93. H. Liu et al., Carbon 48 (2010) 01. [CrossRef] [Google Scholar]
  94. S. Huang et al., J. Am. Chem. Soc. 131 (2009) 06. [CrossRef] [Google Scholar]
  95. X. Peng et al., Chem. Soc. Rev. 38 (2009) 1076. [CrossRef] [Google Scholar]
  96. G. Cao, Nanostructures & nanomaterials: synthesis, properties & applications, Imperial College Press, Washington, 2004. [Google Scholar]
  97. R. Wang, in Nanoparticles: from theory to application, G. Schmid (Ed.), Wiley-VCH, Weinheim, 2004. [Google Scholar]
  98. M.A. Hayat, in Colloidal gold: pronciples, methods and applications, M.A. Hayat (Ed.), Academic Press, San Diego, 1989. [Google Scholar]
  99. P.E. Peter, J.T. Meurig, Angew. Chem. 119 (2007) 5576. [CrossRef] [Google Scholar]
  100. P.K. Jain et al., Acc. Chem. Res. 41 (2008) 12. [Google Scholar]
  101. P.K. Jain et al., J. Phys. Chem. B 110 (2006) 7238. [CrossRef] [PubMed] [Google Scholar]
  102. K.L. Kelly et al., J. Phys. Chem. B 107 (2002) 668. [CrossRef] [Google Scholar]
  103. U. Kreibig, M. Vollmer, Mater. Sci. 25 (1995) 532. [Google Scholar]
  104. S. Link, M.A. El-Sayed, Annu. Rev. Phys. Chem. 54 (2003) 331. [CrossRef] [PubMed] [Google Scholar]
  105. V.V. Mody et al., J. Pharm. Bioall. Sci. 2 (2010) 04. [Google Scholar]
  106. C.J. Murphy et al., J. Phys. Chem. B 109 (2005) 29. [CrossRef] [PubMed] [Google Scholar]
  107. V. Sharma, K. Park, M. Srinivasarao, Mater. Sci. Eng. R 65 (2009) 1–3. [CrossRef] [Google Scholar]
  108. R.C. Rao et al., Chem. Soc. Rev. 29 (2000) 27. [CrossRef] [Google Scholar]
  109. I.H. El-Sayed, X. Huang, M.A. El-Sayed, Nano Lett. 5 (2005) 05. [CrossRef] [PubMed] [Google Scholar]
  110. X. Qian et al., Nat. Biotechnol. 26 (2008) 83. [CrossRef] [Google Scholar]
  111. L. Tong et al., Photochem. Photobiol. 85 (2009) 01. [CrossRef] [Google Scholar]
  112. B.D. Busbee, S.O. Obare, C.J. Murphy, Adv. Mater. 15 (2003) 05. [CrossRef] [Google Scholar]
  113. M. Brust et al., Chem. Commun. 7 (1994). [Google Scholar]
  114. O. Masala, R. Seshadri, Annu. Rev. Mater. Res. 34 (2004). [Google Scholar]
  115. S. Lin, M.T. Franklin, K.J. Klabunde, Langmuir 2 (1986) 02. [CrossRef] [Google Scholar]
  116. S. Stoeva et al., J. Am. Chem. Soc. 124 (2002) 10. [CrossRef] [Google Scholar]
  117. S. Schultz et al., Proc. Natl. Acad. Sci. 97 (2000) 03. [Google Scholar]
  118. F. Furno et al., J. Antimicrob. Chemother. 54 (2004) 06. [CrossRef] [PubMed] [Google Scholar]
  119. A.L. Stepanov, V.N. Popok, D.E. Hole, Glass Phys. Chem. 28 (2002) 02. [CrossRef] [Google Scholar]
  120. Y. Sun, Y. Xia, Science 298 (2002) 5601. [Google Scholar]
  121. M. Yamamoto, M. Nakamoto, J. Mater. Chem. 13 (2003). [Google Scholar]
  122. B.C.H. Steele, A. Heinzel, Nature 414 (2001). [Google Scholar]
  123. H. Mohammadi et al., Int. Nano Lett. 3 (2013) 28. [CrossRef] [Google Scholar]
  124. A. Dandapat et al., Nanomater. Nanotechnol. 3 (2013) 11. [Google Scholar]
  125. S. Sun et al., Science 287 (2000) 5460. [Google Scholar]
  126. C. Hongtao et al., Recent Pat. Nanotechnol. 3 (2009) 01. [Google Scholar]
  127. S.W. Kim et al., Nano Lett. 3 (2003) 09. [CrossRef] [Google Scholar]
  128. B. Quinn, C. Dekker, S.G. Lemay, J. Am. Chem. Soc. 127 (2005) 17. [CrossRef] [Google Scholar]
  129. J. Li, M. Moskovits, T.L. Haslett, Chem. Mater. 10 (1998) 07. [Google Scholar]
  130. L. Qu, L. Dai, J. Am. Chem. Soc. 127 (2005) 31. [Google Scholar]
  131. L. Qu, L. Dai, E. Osawa, J. Am. Chem. Soc. 128 (2006) 16. [CrossRef] [PubMed] [Google Scholar]
  132. H.C. Choi et al., J. Am. Chem. Soc. 124 (2002) 31. [Google Scholar]
  133. J. Kong, M. Chapline, H. Dai, Adv. Mater. 13 (2001) 18. [CrossRef] [Google Scholar]
  134. Y. Zhang, H. Dai, Appl. Phys. Lett. 77 (2000) 19. [CrossRef] [Google Scholar]
  135. R.M. Lago et al., J. Chem. Soc. Chem. Commun. 13 (1995). [Google Scholar]
  136. B. Xue et al., J. Mater. Chem. 11 (2001) 09. [Google Scholar]
  137. E. Lorençon et al., ACS Appl. Mater. Interfaces 1 (2009) 10. [Google Scholar]
  138. F. Zhang, G. Guo, J. Fang, Mater. Res. Bull. 46 (2011) 06. [CrossRef] [Google Scholar]
  139. M. Scarselli et al., J. Nanosci. Nanotechnol. 11 (2011) 10. [CrossRef] [Google Scholar]
  140. H.P. Rohaya, M. Abdul Rahman, Recent. Pat. Eng. 6 (2012) 01. [CrossRef] [Google Scholar]
  141. M. Yang, J. He, J. Colloid Interface Sci. 368 (2012) 01. [CrossRef] [Google Scholar]
  142. K. Byrappa, T. Adschiri, Prog. Cryst. Growth Charact. Mater. 53 (2007). [Google Scholar]
  143. K. Byrappa, S. Ohara, T. Adschiri, Adv. Drug Deliv. Rev. 60 (2008). [Google Scholar]
  144. C.C. Berry, in Nanobiotechnology: inorganic nanoparticles vs. organic nanoparticles, J.M. de la Fuente (Ed.), Elsevier, Great Britain, 2012. [Google Scholar]
  145. P. del Pino, P. Beatriz, in Nanobiotechnology: inorganic nanoparticles vs. organic nanoparticles, frontiers of nanoscience, J.M. de la Fuent, V. Grazu (Eds.), Elsevier, Great Britain, 2012. [Google Scholar]
  146. J. Lu, P. Chang, Z. Fan, Mat. Sci. Eng. R 52 (2006) 01–03. [CrossRef] [Google Scholar]
  147. E. Comini et al., Prog. Mater. Sci. 54 (2009). [Google Scholar]
  148. K. Namratha, K. Byrappa, J. Supercrit. Fluids 79 (2013). [Google Scholar]
  149. K. Namratha, K. Byrappa, Prog. Cryst. Growth Charact. Mater. 58 (2012) 01. [CrossRef] [Google Scholar]
  150. S. Pavasupree et al., Sci. Technol. Adv. Mater. 6 (2005) 03–04. [CrossRef] [Google Scholar]
  151. J. Li et al., J. Colloid Interface Sci. 426 (2014) 90. [CrossRef] [Google Scholar]
  152. H. Ogihara et al., J. Solid State Chem. 182 (2009) 06. [CrossRef] [Google Scholar]
  153. L. Pei, Mater. Charact. 59 (2008) 05. [Google Scholar]
  154. H. Cui et al., Recent Pat. Nanotechnol. 3 (2009). [Google Scholar]
  155. Industrial News, Metal oxides constitute 80% of the nanopowder market volume [www.abercade.ru/en/materials/industrynews/443.html]. [Google Scholar]
  156. G. Wang et al., Solid State Ion. 176 (2005) 11. [Google Scholar]
  157. A. Kongkanand, R. Dominguez, P. Kamat, Nano Lett. 7 (2007) 03. [CrossRef] [Google Scholar]
  158. B. Liu et al., Energy Fuels 21 (2007) 03. [Google Scholar]
  159. R. Kalubarme et al., Nanotechnology 24 (2013) 36. [CrossRef] [Google Scholar]
  160. Y. Hu, C. Guo, in Carbon nanotubes and carbon nanotubes/metal oxide heterostructures: synthesis, characterization and electrochemical property, Dr.M. Naraghi (Ed.), InTech, 2011. [Google Scholar]
  161. T. Sainsbury, D. Fitzmaurice, Chem. Mater. 16 (2004) 11. [Google Scholar]
  162. S. Kudera et al., in Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications, A. Rogach (Ed.), Springer-Verlag, Wien, 2008. [Google Scholar]
  163. C. Frigerio et al., Anal. Chim. Acta 735 (2012). [Google Scholar]
  164. P. O’Brien, N. Pickett, in The chemistry of nanomaterials: synthesis, properties and applications, C. Rao, A. Müller, A. Cheetham (Eds.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005. [Google Scholar]
  165. Q. Song et al., Chem. Commun. 46 (2010). [Google Scholar]
  166. Y. He et al., Adv. Mater. 20 (2008). [Google Scholar]
  167. O. Masala, R. Seshadri, Annu. Rev. Mater. Res. 34 (2004). [Google Scholar]
  168. M. Bacon, S. Bradley, T. Nann, Part. Part. Syst. Charact. 31 (2014) 04. [CrossRef] [Google Scholar]
  169. J. Peng et al., Nano Lett. 12 (2012) 02. [CrossRef] [Google Scholar]
  170. Y. Hu et al., Nanotechnology 24 (2013) 19. [Google Scholar]
  171. K. Sanderson, Nature 459 (2009). [Google Scholar]
  172. M. Kanehara et al., Chem. Eur. J. 18 (2012) 30. [CrossRef] [Google Scholar]
  173. H. Azzazy, M. Mansour, S. Kazmierczak, Clin. Biochem. 40 (2007) 13–14. [CrossRef] [Google Scholar]
  174. R. Hardman, Environ. Health Persp. 114 (2006) 02. [CrossRef] [Google Scholar]
  175. S. Madani et al., Int. J. Nanomedicine 8 (2013). [Google Scholar]
  176. F. Mammeria et al., Colloids Surf. A 439 (2013). [Google Scholar]
  177. V. Biju et al., J. Photochem. Photobiol. 183 (2006) 03. [CrossRef] [Google Scholar]
  178. B. Chen et al., J. Mater. Chem. 20 (2010). [Google Scholar]
  179. M. Danilov, G. Kolbasov, Am. J. Energy Res. 1 (2013) 02. [CrossRef] [Google Scholar]
  180. D.E. Meyer, M.A. Curran, M.A. Gonzalez, J. Nanopart. Res. 13 (2010). [Google Scholar]
  181. N. Krishnan et al., Environ. Sci. Technol. 42 (2008). [Google Scholar]
  182. Milieu Ltd., AMEC Environment & Infrastructure UK Ltd., Review of Environmental Legislation for the Regulatory Control of Nanomaterials Final Report No. 070307/2010/580540/SER/D, 2001 [Google Scholar]
  183. S.I. Olsen, M. Miseljic, in Proceedings of the Conference on Life Cycle Assessment in Nanotechnology – Issues in Impact Assessment and Case Studies, Barcelona, 2011. [Google Scholar]
  184. A.C. Hetherington et al., Int. J. Life Cycle Assess. 19 (2014). [Google Scholar]
  185. M.C. Roco, C.A. Mirkin, M.C. Hersam, Nanotechnology research directions for societal needs in 2020, Springer, New York, 2011. [CrossRef] [Google Scholar]
  186. A. Del Borghi et al., Int. J. Life Cycle Assess. 12 (2007) 01. [CrossRef] [Google Scholar]
  187. R. Hischier, PhD thesis, ETH Zurich, 2013. [Google Scholar]
  188. C. Bauer et al., J. Clean. Prod. 16 (2008) 08–09. [CrossRef] [Google Scholar]
  189. S. Gavankar, S. Suh, A.F. Keller, Int. J. Life Cycle Assess. 17 (2012) 03. [CrossRef] [Google Scholar]
  190. H.C. Kim, V. Fthenakis, J. Ind. Ecol. (2012). [Google Scholar]
  191. V.K.K. Upadhyayula et al., J. Clean. Prod. 26 (2012). [Google Scholar]
  192. M.L. Healy, L.J. Dahlben, J.A. Isaacs, J. Ind. Ecol. 12 (2008) 03. [CrossRef] [Google Scholar]
  193. V. Khanna, N. Campion, in Nanofibers – production, properties and functional applications, T. Lin (Ed.), INTECH, Pittsburgh, 2011. [Google Scholar]
  194. M. Steinfeldt, in Proceedings of Safety Issues and Regulatory Challenges of Nanomaterials in San Sebastian, Spain, 2012. [Google Scholar]
  195. C. Hidalgo et al., Proceeding of the 6th International Conference on Life Cycle Management, 2013. [Google Scholar]
  196. Nanoposts.com (2010). Key Products and players, global markets and applications for nanotechnology in personal care, cosmetics, household care, packaging and leisure wear & equipment [http://www.nanoposts.com/]. [Google Scholar]
  197. E. Minoux, et al., Nano Lett. 5 (2005) 11. [CrossRef] [Google Scholar]
  198. K. Teo, et al., Nature 437 (2005). [Google Scholar]
  199. P. Legagneux, et al., IEEE Nanotechnology 2 (2005) 00. [Google Scholar]
  200. L. Gangloff, et al., Nano Lett. 4 (2004) 09. [CrossRef] [Google Scholar]
  201. C. Meyer, J. Ríos, B. Segal, Nanotechnology: the industrial revolution of the 21st century, Fundación de la Innovación Bankinter, 2006. [Google Scholar]
  202. G. Papanicolaou, et al., Meccanica (2014). [Google Scholar]
  203. C.A. Charitidis, et al., Polym. Compos. 34 (2013) 11. [CrossRef] [Google Scholar]
  204. W. Bauhofer, J.Z. Kovacs, Compos. Sci. Technol. 69 (2009) 10. [CrossRef] [Google Scholar]
  205. Z. Wu, et al., Science 305 (2004) 5688. [Google Scholar]
  206. L. Dai, D. Chang, Small 8 (2012). [Google Scholar]
  207. E.S. Snow, et al., Science 307 (2005) 5717. [Google Scholar]
  208. B. Esser, J. Schnorr, T. Swager, Angew. Chem. Int. Ed. 51 (2012) 23. [Google Scholar]
  209. Z. Liu, et al., ACS Nano 1 (2007) 01. [CrossRef] [Google Scholar]
  210. M. Endo, et al., Carbon 9 (2001). [Google Scholar]
  211. E. Hammel, et al., Carbon 42 (2004) 05–06. [CrossRef] [Google Scholar]
  212. Y.K. Choi, et al., Carbon 43 (2005) 10. [Google Scholar]
  213. K. De Jong, J. Geus, Cat. Rev. Sci. Eng. 42 (2000) 04. [Google Scholar]
  214. G. Tibbetts, et al., Compos. Sci. Technol. 67 (2007) 07–08. [CrossRef] [Google Scholar]
  215. X. Yang, et al., Int. J. Nanomedicine 9 (2014). [Google Scholar]
  216. N. Gharbi, et al., Nano Lett. 5 (2005). [Google Scholar]
  217. N. Durr, et al., Nano Lett. 7 (2007) 04. [CrossRef] [Google Scholar]
  218. S. Aryal, et al., J. Mater. Chem. 19 (2009). [Google Scholar]
  219. A.T. Le, et al., Adv. Nat. Sci. Nanosci. Nanotechnol. 3 (2012) 04. [Google Scholar]
  220. J. Kim, et al., Nanomedicine 3 (2007) 01. [CrossRef] [Google Scholar]
  221. H. Lara, et al., World J. Microb. Biot. 26 (2010) 04. [Google Scholar]
  222. S. Sudrik, et al., Chem. Eur. J. 12 (2006) 03. [CrossRef] [Google Scholar]
  223. K. Bratlie, et al., Nano Lett. 10 (2007) 07. [Google Scholar]
  224. D. Astruk, Eur. J. Inorg. Chem. 46 (2007) 06. [Google Scholar]
  225. A. Bell, Science 299 (2003) 5613. [CrossRef] [PubMed] [Google Scholar]
  226. S. Pratsinis, in Aerosol science and technology: history and reviews, D.S. Ensor, K. Lohr (Eds.), RTI Press, 2011. [Google Scholar]
  227. K. Clement et al., in Handbook of industrial chemistry and biotechnology, J.A. Kent (Ed.), 12nd edn., Springer, New York, 2012. [Google Scholar]
  228. D. Rickerby, J. Nanosci. Nanotechnol. 7 (2007) 12. [Google Scholar]
  229. C. Buzea, I.P. Blandino, K. Robbie, Biointerphases 2 (2007) 04. [Google Scholar]
  230. C. Belcher et al., in Nanotechnology commercializaton, T. Tsuzuki (Ed.), Taylor & Francis Group, LLC, 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.