Open Access
Review
Issue
Manufacturing Rev.
Volume 1, 2014
Article Number 23
Number of page(s) 18
DOI https://doi.org/10.1051/mfreview/2014022
Published online 23 January 2015
  1. M.W. Fu, W.L. Chan, A review on the state-of-the-art microforming technologies, The International Journal of Advanced Manufacturing Technology 67 (2013) 2411–2437. [CrossRef] [Google Scholar]
  2. Y. Qin, A. Brockett, Y. Ma, A. Razali, J. Zhao, C. Harrison, W. Pan, X. Dai, D. Loziak, Micro-manufacturing: research, technology outcomes and development issues, The International Journal of Advanced Manufacturing Technology 47 (2010) 821–837. [CrossRef] [Google Scholar]
  3. M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel, Microforming, CIRP Annals – Manufacturing Technology 50 (2001) 445–462. [CrossRef] [Google Scholar]
  4. J. Jeswiet, M. Geiger, U. Engel, M. Kleiner, M. Schikorra, J. Duflou, R. Neugebauer, P. Bariani, S. Bruschi, Metal forming progress since 2000, CIRP Journal of Manufacturing Science and Technology 1 (2008) 2–17. [CrossRef] [Google Scholar]
  5. U. Engel, R. Eckstein, Microforming-from basic research to its realization, Journal of Materials Processing Technology 125–126 (2002) 35–44. [CrossRef] [Google Scholar]
  6. F. Vollertsen, Categories of size effects, Production Engineering Research and Development 2 (2008) 377–383. [CrossRef] [Google Scholar]
  7. Y. Qin, Microforming and miniature manufacturing systems-development needs and perspectives, Journal of Materials Processing Technology 177 (2006) 8–18. [CrossRef] [Google Scholar]
  8. C.J. Wang, D.B. Shan, J. Zhou, B. Guo, L.N. Sun, Size effects of the cavity dimensions on the microforming ability during coining process, Journal of Materials Processing Technology 187–188 (2007) 256–259. [CrossRef] [Google Scholar]
  9. C. Wang, C.J. Wang, B. Guo, D.B. Shan, G. Huang, Size effect on flow stress in uniaxial compression of pure nickel cylinders with a few grains across thickness, Material Letters 106 (2013) 294–296. [CrossRef] [Google Scholar]
  10. U. Engel, Tribology in microforming, Wear 260 (2006) 265–273. [CrossRef] [Google Scholar]
  11. F. Vollertsen, Z. Hu, H. Schulze Niehoff, C. Theiler, State of the art in microforming and investigations into micro deep drawing, Journal of Materials Processing Technology 151 (2004) 70–79. [CrossRef] [Google Scholar]
  12. C.J. Wang, B. Guo, D.B. Shan, X.M. Bai, Tribological behaviors of DLC film deposited on female die used in strip drawing, Journal of Materials Processing Technology 213 (2013) 323–329. [CrossRef] [Google Scholar]
  13. E. Brinksmeier, O. Riemer, S. Twardy, Tribological behavior of micro structured surfaces for microforming tools, International Journal of Machine Tools and Manufacture 50 (2010) 425–430. [CrossRef] [Google Scholar]
  14. A.R. Razali, Y. Qin, A review on micro-manufacturing, microforming and their key issues, Procedia Engineering 53 (2013) 665–672. [CrossRef] [Google Scholar]
  15. A. Messner, U. Engel, R. Kals, F. Vollertsen, Size effect in the FE-simulation of microforming processes, Journal of Materials Processing Technology 45 (1994) 371–376. [CrossRef] [Google Scholar]
  16. W.L. Chan, M.W. Fu, J. Lu, The size effect on micro deformation behaviour in micro-scale plastic deformation, Materials and Design 32 (2011) 198–206. [CrossRef] [Google Scholar]
  17. N. Tiesler, U. Engel, M. Geiger, Forming of microparts-effects of miniaturization on friction, Proceeding of the Sixth International Conference on Technology of Plasticity, Nuremberg, Germany, September 19–24, 1999, pp. 889–894. [Google Scholar]
  18. M. Geiger, A. Messner, U. Engel, Production of microparts – size effects in bulk metal forming, Production Engineering 4 (1997) 55–58. [Google Scholar]
  19. U. Engel, A. Messner, N. Tiesler, Cold forging of microparts – effect of miniaturization on friction, Proceedings of the First ESAFORM Conference on Materials Forming, Sophia Antipolis, France, 1998, pp. 77–80. [Google Scholar]
  20. N. Tiesler, U. Engel, Microforming-effects of miniaturization, Proceedings of the 8th International Conference on Metal Forming, Rotterdam, Holland, 2000, pp. 355–360. [Google Scholar]
  21. N. Tielser, Microforming-size effects in friction and their influence on extrusion processes, Wire 52 (2002) 34–38. [Google Scholar]
  22. N. Krishnan, J. Cao, K. Dohda, Study of the size effects on friction conditions in microextrusion-Part I: Microextrusion experiments and analysis, Journal of Manufacturing Science and Engineering 129 (2007) 669–676. [CrossRef] [Google Scholar]
  23. L.F. Mori, N. Krishnan, J. Cao, H.D. Espinosa, Study of the size effects and friction conditions in microextrusion-Part II: Size effect in dynamic friction for brass-steel pairs, Journal of Manufacturing Science and Engineering 129 (2007) 677–689. [CrossRef] [Google Scholar]
  24. W.L. Chan, M.W. Fu, B. Yang, Study of size effect in micro-extrusion process of pure copper, Materials and Design 32 (2011) 3772–3782. [CrossRef] [Google Scholar]
  25. F. Gong, B. Guo, C.J. Wang, D.B. Shan, Size effect on friction of C3602 in cylinder compression, Tribology Transactions 53 (2010) 244–248. [CrossRef] [Google Scholar]
  26. B. Guo, F. Gong, C.J. Wang, D.B. Shan, Flow stress and tribology size effects in scaled down cylinder compression, Transactions of Nonferrous Metals Society of China 19 (2009) s516–s520. [CrossRef] [Google Scholar]
  27. P.S. Nielsen, N.A. Paldan, M. Calaon, N. Bay, Scale effects in metal-forming of friction and lubrication, Proceeding of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 225 (2011) 924–931. [CrossRef] [Google Scholar]
  28. B. Guo, F. Gong, C.J. Wang, D.B. Shan, Size effect on friction in scaled down strip drawing, Journal of Materials Science 45 (2010) 4067–4072. [CrossRef] [Google Scholar]
  29. Z. Hu, F. Vollertsen, Modelling of friction with respect to size effects, International Journal of Material Forming 1 (2008) 1231–1234. [CrossRef] [Google Scholar]
  30. Z. Hu, F. Vollertsen, Friction test for deep drawing with respect to size-effects, Proceeding of the 1st International Conference on New Forming Technology, Harbin, China, September 6–9, 2004, pp. 153–158. [Google Scholar]
  31. F. Vollertsen, H. Schulzer Niehoff, Z. Hu, State of the art in microforming, International Journal of Machine Tools and Manufacturing 46 (2006) 1172–1179. [CrossRef] [Google Scholar]
  32. Z. Hu, F. Vollertsen, A new frictions test method, Journal for Technology of Plasticity 29 (2004) 1–10. [Google Scholar]
  33. F. Vollertsen, Z. Hu, Tribological size effects in sheet metal forming measured by a strip drawing test, CIRP Annals – Manufacturing Technology 55 (2006) 291–294. [CrossRef] [Google Scholar]
  34. F. Vollertsen, D. Biermann, H.N. Hansen, I.S. Jawahir, K. Kuzman, Size effects in manufacturing of metallic components, CIRP Annals – Manufacturing Technology 58 (2009) 566–587. [CrossRef] [Google Scholar]
  35. F. Vollertsen, Z. Hu, Determination of size-dependent friction functions in sheet metal forming with respect to the distribution of the contact pressure, Production Engineering Research and Development 2 (2008) 345–350. [CrossRef] [Google Scholar]
  36. C.J. Wang, B. Guo, D.B. Shan, Y. Yao, F. Gong, Size effect of tribology behaviour in micro U-deep drawing with T2 copper foil, Steel Research International 81 (2010) 1177–1180. [Google Scholar]
  37. C.J. Wang, B. Guo, D.B. Shan, J. Xu, H. Zhuang, Effect of nano-crystals at surfaces induced by ion beam irradiation on the tribological behaviour in microforming, Vacuum 89 (2013) 267–270. [CrossRef] [Google Scholar]
  38. F. Vollertsen, Z. Hu, On the drawing limit in micro deep drawing, Journal for Technology of Plasticity 32 (2007) 1–12. [Google Scholar]
  39. R.S. Eriksen, S. Weidel, H.N. Hansen, Tribological influence of tool surface roughness within microforming, International Journal of Material Forming 3 (2010) 419–422. [CrossRef] [Google Scholar]
  40. M. Pfestorf, U. Engel, M. Geiger, Three-dimensional characterization of surfaces for sheet metal forming, Wear 216 (1998) 244–250. [CrossRef] [Google Scholar]
  41. S. Weidel, U. Engel, Surface characterisation in forming processes by functional 3D parameters, The International Journal of Advanced Manufacturing Technology 33 (2007) 130–136. [CrossRef] [Google Scholar]
  42. S. Weidel, U. Engel, Characterisation of the flattening behaviour of modelled asperities, Wear 266 (2009) 596–599. [CrossRef] [Google Scholar]
  43. S. Weidel, U. Engel, Impact of liquid lubricant on the flattening behaviour of single asperities, November 12, 2007, http://www.4m-org.org [Google Scholar]
  44. S. Weidel, U. Engel, M. Merklein, M. Geiger, Basic investigation on boundary lubrication in metal forming processes by in situ observation of the real contact area, Production Engineering Research and Development 4 (2010) 107–114. [CrossRef] [Google Scholar]
  45. T. Shimizu, Y. Murashige, S. Iwaoka, M. Yang, K. Manabe, Scale dependence of adhesion behavior under dry friction in progressive micro-deep drawing, Journal of Solid Mechanics and Materials Engineering 7 (2013) 251–263. [CrossRef] [Google Scholar]
  46. H. Flosky, F. Vollertsen, Wear behavior in a combined micro blanking and deep drawing process, CIRP Annals – Manufacturing Technology 63 (2014) 281–284. [CrossRef] [Google Scholar]
  47. L.F. Peng, X.M. Lai, H.J. Lee, J.H. Song, J. Ni, Friction behavior modeling and analysis in micro/meso scale metal forming process, Materials & Design 31 (2010) 1953–1961. [CrossRef] [Google Scholar]
  48. C.J. Wang, B. Guo, D.B. Shan, M.M. Zhang, X.M. Bai, Tribological behaviors in microforming considering microscopically trapped lubricant at contact interface, The International Journal of Advanced Manufacturing Technology 71 (2014) 2083–2090. [CrossRef] [Google Scholar]
  49. W. Zheng, G.C. Wang, G.Q. Zhao, D.B. Wei, Z.Y. Jiang, Modelling and analysis of dry friction in microforming of metals, Tribology International 57 (2013) 202–209. [CrossRef] [Google Scholar]
  50. E. Doege, C. Kaminsky, A. Bagaviev, A new concept for the description of surface friction phenomena, Journal of Materials Processing Technology 94 (1999) 189–192. [CrossRef] [Google Scholar]
  51. X.S. Chen, Y. Qin, R. Balendra, Development of a statistical parameter-based surface model for the simulation of variation of surface roughness with contact pressure, Journal of Materials Processing Technology 145 (2004) 247–255. [CrossRef] [Google Scholar]
  52. K. Manabe, H. Koyama, H. Nouka, M. Yang, K. Ito, Finite element analysis of micro cup drawing process using tool and blank models with surface roughness, Proceeding of the Eighth International Conference on Technology of Plasticity, Verona, Italy, October 9–13, 2005. [Google Scholar]
  53. K. Manabe, T. Shimizu, H. Koyama, M. Yang, K. Ito, Validation of FE simulation based on surface roughness model in micro-deep drawing, Journal of Materials Processing Technology 204 (2008) 89–93. [CrossRef] [Google Scholar]
  54. J. Jeon, A.N. Bramley, A friction model for microforming, The International Journal of Advanced Manufacturing Technology 33 (2007) 125–129. [CrossRef] [Google Scholar]
  55. M. Taureza, X. Song, S. Castagne, Depth-dependent stress-strain relation for friction prediction, International Journal of Mechanical Science 86 (2014) 46–53. [CrossRef] [Google Scholar]
  56. C.J. Wang, C.J. Wang, B. Guo, D.B. Shan, Effects of tribological behaviors of DLC film on micro-deep drawing processes, Transactions of Nonferrous Metals Society of China 24 (2014) 2877–2882. [CrossRef] [Google Scholar]
  57. K. Kitamura, T. Ymamoto, Y. Tsuchiya, K. Dohda, Application of DLC-coating to metal forming die, Proceeding of International Conference on Tribology in Manufacture Processes, Yokohama, Japan, September 24–26, 2007, pp. 169–174. [Google Scholar]
  58. K. Fujimoto, M. Yang, M. Hotta, H. Koyama, S. Nakano, K. Morikawa, J. Cairney, Fabrication of dies in micro-scale for micro-sheet metal forming, Journal of Materials Processing Technology 177 (2006) 639–643. [CrossRef] [Google Scholar]
  59. M. Yang, K. Manabe, K. Ito, Micro press forming and assembling of micro parts in a progressive die, Journal of Mechanical Science and Technology 21 (2007) 1338–1343. [CrossRef] [Google Scholar]
  60. T. Aizawa, E. Iwamura, K. Itoh, Nano-lamination in amorphous carbon for tailored coating in micro-dry stamping of AISI-304 stainless steel sheets, Surface and Coatings Technology 203 (2008) 794–798. [CrossRef] [Google Scholar]
  61. T. Aizawa, K. Itoh, E. Iwamura, Nano-laminated DLC film for dry micro-stamping, Steel Research International 81 (2010) 1169–1172. [Google Scholar]
  62. F. Gong, B. Guo, C.J. Wang, D.B. Shan, Micro deep drawing of micro cups by using DLC film coated blank holders and dies, Diamond and Related Materials 20 (2011) 196–200. [CrossRef] [Google Scholar]
  63. C.J. Wang, B. Guo, D.B. Shan, X.M. Bai, Experimental research on micro-deep drawing processes of pure gold thin sheet using DLC-coated female die, The International Journal of Advanced Manufacturing Technology 67 (2013) 2477–2487. [CrossRef] [Google Scholar]
  64. Z.Y. Hu, A. Schubnov, F. Vollertsen, Tribological behaviour of DLC-films and their application in micro deep drawing, Journal of Materials Processing Technology 122 (2012) 647–652. [CrossRef] [Google Scholar]
  65. H. Flosky, F. Vollertsen, Wear behavior of a DLC-coated blanking and deep drawing tool combination, Key Engineering Materials 549 (2013) 511–517. [CrossRef] [Google Scholar]
  66. H. Morita, T. Aizawa, N. Yoshida, S. Kurozumi, Dry transfer stamping by nano-laminated DLC-coated tool, Proceeding of 10th International Conference on Technology of Plasticity, Aachen, Germany, September 25–30, 2011, pp. 1103–1108. [Google Scholar]
  67. N. Takatsuji, K. Dohda, T. Makino, T. Yoshimura, Friction behavior in aluminium micro-extrusion, International Conference on Tribology in Manufacture Processes, Yokohama, Japan, September 24–26, 2007, pp. 157–162. [Google Scholar]
  68. N. Krishnan, J. Cao, K. Dohda, Microforming: study of friction conditions and the impact of low friction/high strength die coatings on the extrusion of microparts, Proceeding of ASME International Mechanical Engineering Conference and Exposition, Orlando, USA, November 2005, pp. 1–10. [Google Scholar]
  69. S.W. Baek, S.I. Oh, S.H. Rhim, Lubrication for microforming of ultra thin metal foil, CIRP Annals – Manufacturing Technology 55 (2006) 295–298. [CrossRef] [Google Scholar]
  70. K. Wagner, A. Putz, U. Engel, Improvement of tool life in cold forging by locally optimized surfaces, Journal of Materials Processing Technology 177 (2006) 206–209. [CrossRef] [Google Scholar]
  71. K. Wagner, R. Völkl, U. Engel, Tool life enhancement in cold forging by locally optimized surfaces, Journal of Materials Processing Technology 201 (2008) 2–8. [CrossRef] [Google Scholar]
  72. A.A.G. Bruzzone, H.L. Costa, P.M. Lonardo, D.A. Lucca, Advances in engineered surfaces for functional performance, CIRP Annals – Manufacturing Technology 57 (2008) 750–769. [CrossRef] [Google Scholar]
  73. M. Wakuda, Y. Yamauchi, S. Kanzaki, Y. Yasuda, Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact, Wear 254 (2003) 356–363. [CrossRef] [Google Scholar]
  74. P. Andersson, J. Koskinen, S. Varjus, Y. Gerbig, H. Haefke, S. Georgiou, B. Zhmud, W. Buss, Microlubrication effect by laser-textured steel surfaces, Wear 262 (2007) 369–379. [CrossRef] [Google Scholar]
  75. E. Gualtieri, A. Borghi, L. Calabri, N. Pugno, S. Valeri, Increasing nanohardness and reducing friction of nitride steel by laser surface texturing, Tribology International 42 (2009) 699–705. [CrossRef] [Google Scholar]
  76. B. Kim, Y.H. Chae, H.S. Choi, Effects of surface texturing on the frictional behaviour of cast iron surfaces, Tribology International 70 (2014) 128–135. [CrossRef] [Google Scholar]
  77. H.L. Costa, I.M. Hutchings, Effect of die surface patterning on lubrication in strip, Journal of Materials Processing Technology 209 (2009) 1175–1180. [CrossRef] [Google Scholar]
  78. Z.M. Hu, T.A. Dean, A study of surface topography, friction and lubricants in metalforming, International Journal of Machine Tools and Manufacture 40 (2000) 1637–1649. [CrossRef] [Google Scholar]
  79. T. Sugihara, T. Enomoto, Development of a cutting tool with a nano/micro-textured surface-improvement of anti-adhesive effect by considering the texture patterns, Precision Engineering 33 (2009) 425–429. [CrossRef] [Google Scholar]
  80. D.E. Kim, K.H. Cha, I.H. Sung, Design of surface micro-structures for friction control in micro-systems application, CIRP Annals – Manufacturing Technology 51 (2002) 495–498. [CrossRef] [Google Scholar]
  81. I. Shimizu, J.L. Andreasen, J.I. Bech, N. Bay, Influence of workpiece surface topography on the mechanisms of liquid lubrication in strip drawing, Journal of Tribology 123 (2001) 290–294. [CrossRef] [Google Scholar]
  82. N. Krishnan, Friction in microforming, Encyclopedia of Tribology, Springer, 2013, pp. 1334–1338. [CrossRef] [Google Scholar]
  83. D. Wang, H. Yang, H. Li, Advance and trend of friction study in plastic forming, Transactions of Nonferrous Metals Society of China 24 (2014) 1263–1272. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.