Open Access
Review
Issue
Manufacturing Rev.
Volume 1, 2014
Article Number 24
Number of page(s) 12
DOI https://doi.org/10.1051/mfreview/2015001
Published online 17 February 2015
  1. H. Paschke, M. Weber, G. Braeuer, T. Yilkiran, B.A. Behrens, H. Brand, Optimized plasma nitriding processes for efficient wear reduction of forging dies, Archives of Civil and Mechanical Engineering 12 (2012) 407–412. [CrossRef] [Google Scholar]
  2. A. Shokrani, V. Dhokia, S.T. Newman, Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids, International Journal of Machine Tools and Manufacture 57 (2012) 83–101. [Google Scholar]
  3. T.W. Scharf, S.V. Prasad, Solid lubricants: a review, Journal of Materials Science 48 (2013) 511–531. [CrossRef] [Google Scholar]
  4. T.W. Scharf, S.V. Prasad, M.T. Dugger, P.G. Kotula, R.S. Goeke, R.K. Grubbs, Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS, Acta Materialia 54 (2006) 4731–4743. [CrossRef] [Google Scholar]
  5. H.E. Sliney. Self-lubricating fluoride-metal composite materials. USA: US3419363A; 1968. [Google Scholar]
  6. B. Stegemann, M. Klemm, S. Horn, M. Woydt, Switching adhesion forces by crossing the metal-insulator transition in Magnéli-type vanadium oxide crystals, Beilstein Journal of Nanotechnology 2 (2011) 59–65. [CrossRef] [Google Scholar]
  7. G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, Magnéli phase formation of PVD Mo-N and W-N coatings, Surface & Coatings Technology 201 (2006) 3335–3341. [CrossRef] [Google Scholar]
  8. W. Gulbiński, T. Suszko, Thin films of MoO3-Ag2O binary oxides – the high temperature lubricants, Wear 261 (2006) 867–873. [CrossRef] [Google Scholar]
  9. D. Stone, et al., Layered atomic structures of double oxides for low shear strength at high temperatures, Scripta Materialia 62 (2010) 735–738. [CrossRef] [Google Scholar]
  10. C. Higdon, et al., Friction and wear mechanisms in AlMgB14-TiB2 nanocoatings, Wear 271 (2011) 2111–2115. [CrossRef] [Google Scholar]
  11. R. Cherukuri, M. Womack, P. Molian, A. Russell, Y. Tian, Pulsed laser deposition of AlMgB14 on carbide inserts for metal cutting, Surface and Coatings Technology 155 (2002) 112–120. [CrossRef] [Google Scholar]
  12. S.M. Aouadi, B. Luster, P. Kohli, C. Muratore, A.A. Voevodin, Progress in the development of adaptive nitride-based coatings for high temperature tribological applications, Surface and Coatings Technology 204 (2009) 962–968. [CrossRef] [Google Scholar]
  13. K.-D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann, R. M’Saoubi, Cutting with coated tools: Coating technologies, characterization methods and performance optimization, CIRP Annals – Manufacturing Technology 61 (2012) 703–723. [Google Scholar]
  14. K. Kutschej, C. Mitterer, C. Mulligan, D. Gall, High-temperature tribological behavior of CrN-Ag self-lubricating coatings, Advanced Engineering Materials 8 (2006) 1125–1129. [CrossRef] [Google Scholar]
  15. K. Kutschej, N. Fateh, P.H. Mayrhofer, M. Kathrein, P. Polcik, C. Mitterer, Comparative study of Ti1−xAlxN coatings alloyed with Hf, Nb, and B, Surface and Coatings Technology 200 (2005) 113–117. [CrossRef] [Google Scholar]
  16. V. Braic, A. Vladescu, M. Balaceanu, C.R. Luculescu, M. Braic, Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings, Surface and Coatings Technology 211 (2012) 117–121. [CrossRef] [Google Scholar]
  17. J.H. Ouyang, T. Murakami, S. Sasaki, High-temperature tribological properties of a cathodic arc ion-plated (V, Ti)N coating, Wear 263 (2007) 1347–1353. [CrossRef] [Google Scholar]
  18. N. Fateh, G.A. Fontalvo, G. Gassner, C. Mitterer, The beneficial effect of high-temperature oxidation on the tribological behaviour of V and VN coatings, Tribology Letters 28 (2007) 1–7. [CrossRef] [Google Scholar]
  19. K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, C. Mitterer, Influence of oxide phase formation on the tribological behaviour of Ti–Al–V–N coatings, Surface and Coatings Technology 200 (2005) 1731–1737. [CrossRef] [Google Scholar]
  20. P.H. Mayrhofer, P.E. Hovsepian, C. Mitterer, W.D. Münz, Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings, Surface and Coatings Technology 177–178 (2004) 341–347. [CrossRef] [Google Scholar]
  21. W. Tillmann, S. Momeni, F. Hoffmann, A study of mechanical and tribological properties of self-lubricating TiAlVN coatings at elevated temperatures, Tribology International 66 (2013) 324–329. [CrossRef] [Google Scholar]
  22. D. Becker, Wear of nanostructured composite tool coatings, Wear 304 (2013) 88–95. [CrossRef] [Google Scholar]
  23. K. Bobzin, N. Bagcivan, M. Ewering, R.H. Brugnara, Vanadium alloyed PVD CrAlN coatings for friction reduction in metal forming applications, Tribology in Industry 34 (2012) 101–107. [Google Scholar]
  24. D.S. Stone, et al., Adaptive NbN/Ag coatings for high temperature tribological applications, Surface and Coatings Technology 206 (2012) 4316–4321. [CrossRef] [Google Scholar]
  25. D.S. Stone, et al., Lubricious silver tantalate films for extreme temperature applications, Surface and Coatings Technology 217 (2013) 140–146. [CrossRef] [Google Scholar]
  26. S.M. Aouadi, et al., Adaptive VN/Ag nanocomposite coatings with lubricious behavior from 25 to 1000 °C, Acta Materialia 58 (2010) 5326–5331. [CrossRef] [Google Scholar]
  27. C. Bruce, G. Kerry, Tough nanocoatings boost industrial energy efficiency, Ames Laboratory, US Department of Energy, 2008. [Google Scholar]
  28. A.H. Shaw, Wear-resistance, lubricity, and adhesion of femtosecond pulsed laser deposited AlMgB14-based thin films [MASTER OF SCIENCE]: 2011. Iowa State University. [Google Scholar]
  29. M.N. Gardos, The problem-solving role of basic science in solid lubrication. In I.M. Hutchings, editor. the First World Tribology Congress. Mechanical Engineering Publications, London, 1997, pp. 229–250. [Google Scholar]
  30. W. Gulbiński, T. Suszko, W. Sienicki, B. Warcholiński, Tribological properties of silver- and copper-doped transition metal oxide coatings, Wear 254 (2003) 129–135. [CrossRef] [Google Scholar]
  31. S. Andersson, A. Magnéli, Diskrete Titanoxydphasen im Zusammensetzungsbereich TiO1,75-TiO1,90, Natur wissenschaften 43 (1956) 495–496. [CrossRef] [Google Scholar]
  32. A. Magnéli, Structures of the ReO3-type with recurrent dislocations of atoms: “homologous series” of molybdenum and tungsten oxides, Acta Crystallographica 6 (1953) 495–500. [CrossRef] [Google Scholar]
  33. E. Lugscheider, S. Bärwulf, C. Barimani, Properties of tungsten and vanadium oxides deposited by MSIP-PVD process for self-lubricating applications, Surface and Coatings Technology 120–121 (1999) 458–464. [CrossRef] [Google Scholar]
  34. E. Lugscheider, O. Knotek, K. Bobzin, S. Bärwulf, Tribological properties, phase generation and high temperature phase stability of tungsten- and vanadium-oxides deposited by reactive MSIP-PVD process for innovative lubrication applications, Surface and Coatings Technology 133–134 (2000) 362–368. [CrossRef] [Google Scholar]
  35. A. Banerji, S. Bhowmick, A.T. Alpas, High temperature tribological behavior of W containing diamond-like carbon (DLC) coating against titanium alloys, Surface and Coatings Technology 241 (2014) 93–104. [CrossRef] [Google Scholar]
  36. W. Gulbiński, T. Suszko, Thin films of Mo2N/Ag nanocomposite – the structure, mechanical and tribological properties, Surface and Coatings Technology 201 (2006) 1469–1476. [CrossRef] [Google Scholar]
  37. T. Suszko, W. Gulbiński, J. Jagielski, Mo2N/Cu thin films – the structure, mechanical and tribological properties, Surface and Coatings Technology 200 (2006) 6288–6292. [CrossRef] [Google Scholar]
  38. C.P. Mulligan, T.A. Blanchet, D. Gall, CrN–Ag nanocomposite coatings: Tribology at room temperature and during a temperature ramp, Surface and Coatings Technology 204 (2010) 1388–1394. [CrossRef] [Google Scholar]
  39. P. Basnyat, et al., Mechanical and tribological properties of CrAlN-Ag self-lubricating films, Surface and Coatings Technology 202 (2007) 1011–1016. [CrossRef] [Google Scholar]
  40. K. Kutschej, C. Mitterer, C.P. Mulligan, D. Gall, High-temperature tribological behavior of CrN-Ag self-lubricating coatings, Advanced Engineering Materials 8 (2006) 1125–1129. [CrossRef] [Google Scholar]
  41. S.M. Aouadi, et al., Tribological investigation of adaptive Mo2N/MoS2/Ag coatings with high sulfur content, Surface and Coatings Technology 203 (2009) 1304–1309. [CrossRef] [Google Scholar]
  42. W. Zhang, D. Demydov, M.P. Jahan, K. Mistry, A. Erdemir, A.P. Malshe, Fundamental understanding of the tribological and thermal behavior of Ag-MoS2 nanoparticle-based multi-component lubricating system, Wear 288 (2012) 9–16. [CrossRef] [Google Scholar]
  43. S.V. Prasad, N.T. McDevitt, J.S. Zabinski, Tribology of tungsten disulfide-nanocrystalline zinc oxide adaptive lubricant films from ambient to 500 °C, Wear 237 (2000) 186–196. [CrossRef] [Google Scholar]
  44. J.S. Zabinski, M.S. Donley, N.T. McDevitt, Mechanistic study of the synergism between Sb2O3 and MoS2 lubricant systems using Raman spectroscopy, Wear 165 (1993) 103–108. [CrossRef] [Google Scholar]
  45. J.S. Zabinski, M.S. Donley, V.J. Dyhouse, N.T. McDevitt, Chemical and tribological characterization of PbO/MoS2 films grown by pulsed laser deposition, Thin Solid Films 214 (1992) 156–163. [CrossRef] [Google Scholar]
  46. X.T. Zeng, TiN/NbN superlattice hard coatings deposited by unbalanced magnetron sputtering, Surface and Coatings Technology 113 (1999) 75–79. [CrossRef] [Google Scholar]
  47. M. Halvarsson, J.E. Trancik, S. Ruppi, The microstructure of CVD κ-Al2O3 multilayers separated by thin intermediate TiN or TiC layers, International Journal of Refractory Metals and Hard Materials 24 (2006) 32–38. [CrossRef] [Google Scholar]
  48. C. Muratore, J.J. Hu, A.A. Voevodin, Tribological coatings for lubrication over multiple thermal cycles, Surface and Coatings Technology 203 (2009) 957–962. [CrossRef] [Google Scholar]
  49. A.A. Voevodin, T.A. Fitz, J.J. Hu, J.S. Zabinski, Nanocomposite tribological coatings with “chameleon” surface adaptation, Journal of Vacuum Science & Technology A 20 (2002) 1434–1444. [CrossRef] [Google Scholar]
  50. A.A. Voevodin, J.S. Zabinski, Supertough wear-resistant coatings with “chameleon” surface adaptation, Thin Solid Films 370 (2000) 223–231. [CrossRef] [Google Scholar]
  51. H. Paschke, M. Stueber, C. Ziebert, M. Bistron, P. Mayrhofer, Composition, microstructure and mechanical properties of boron containing multilayer coatings for hot forming tools, Surface and Coatings Technology 205 (2011) S24–S28. [CrossRef] [Google Scholar]
  52. T. Bell, H. Dong, Y. Sun, Realising the potential of duplex surface engineering, Tribology International 31 (1998) 127–137. [CrossRef] [Google Scholar]
  53. A.A. Voevodin, J.S. Zabinski, Laser surface texturing for adaptive solid lubrication, Wear 261 (2006) 1285–1292. [CrossRef] [Google Scholar]
  54. X. Wang, K. Adachi, K. Otsuka, K. Kato, Optimization of the surface texture for silicon carbide sliding in water, Applied Surface Science 253 (2006) 1282–1286. [CrossRef] [Google Scholar]
  55. J.E. Krzanowski, J.L. Endrino, K. Hirschman, Novel composite coatings with 3D coating architectures for tribological applications fabricated using semiconductor patterning processes 203 (2002) 273–278. [Google Scholar]
  56. P. Basnyat, et al., Surface texturing for adaptive solid lubrication, Surface and Coatings Technology 203 (2008) 73–79. [CrossRef] [Google Scholar]
  57. B. Luster, et al., Textured VN coatings with Ag3VO4 solid lubricant reservoirs, Surface and Coatings Technology 206 (2011) 1932–1935. [CrossRef] [Google Scholar]
  58. A. Moshkovith, V. Perfiliev, D. Gindin, N. Parkansky, R. Boxman, L. Rapoport, Surface texturing using pulsed air arc treatment, Wear 263 (2007) 1467–1469 [CrossRef] [Google Scholar]
  59. J.H. Zimmerman, C.G. Guleryuz, J.E. Krzanowski, Fabrication and tribological properties of titanium nitride coatings incorporating solid lubricant microreservoirs, Surface and Coatings Technology, 202 (2008) 2023–2032. [CrossRef] [Google Scholar]
  60. P.L. Dickrell, et al., Tunable friction behavior of oriented carbon nanotube films, Tribology Letters, 24 (2006) 85–90. [CrossRef] [Google Scholar]
  61. X. Zhang, et al., Carbon nanotube-MoS2 composites as solid lubricants, ACS Applied Materials and Interfaces 1 (2009) 735–739. [CrossRef] [Google Scholar]
  62. A.H. Church, X.F. Zhang, B. Sirsota, P. Kohli, S.M. Aouadi, S. Talapatra, Carbon nanotube-based adaptive solid lubricant composites, Advanced Science Letters 5 (2012) 188–191. [CrossRef] [Google Scholar]
  63. D. Golberg, et al., Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes, Nano Letters 7 (2007) 2146–2151. [CrossRef] [Google Scholar]
  64. B. Podgornik, S. Hogmark, O. Sandberg, Proper coating selection for improved galling performance of forming tool steel, Wear 261 (2006) 15–21. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.