Open Access
Manufacturing Rev.
Volume 8, 2021
Article Number 3
Number of page(s) 23
Published online 10 February 2021
  1. J.-D. Kim, D.S. Kim, Theoretical analysis of micro-cutting characteristics in ultra-precision machining, J. Mater. Process. Technol. 49 (1995) 387–398 [CrossRef] [Google Scholar]
  2. D. Lucca, Y. Seo, R. Komanduri, Effect of tool edge geometry on energy dissipation in ultra-precision machining, CIRP Ann. Manuf. Technol. 42 (1993) 83–86 [Google Scholar]
  3. K. Liu, X.P. Li, M. Rahman, Characteristics of high speed micro-cutting of tungsten carbide, J. Mater. Process. Technol. 140 (2003) 352–357 [CrossRef] [Google Scholar]
  4. S.M. Son, H.S. Lim, J.H. Ahn, Effects of the friction coefficient on the minimum cutting thickness in micro cutting, Int. J. Mach. Tools Manuf. 45 (2005) 529–535 [Google Scholar]
  5. M. Vogler, S. Kapoor, R. DeVor, On the modeling and analysis of machining performance in micro-end milling, part II: cutting force prediction, Trans. ASME J. Manuf. Sci. Eng. 126 (2004) 695–705 [Google Scholar]
  6. M. Martellotti, An analysis of milling process, ASME J. Manuf. Sci. Eng. 63 (1941) 677–700 [Google Scholar]
  7. W. Bao, Modeling micro-end-milling operations. Part I: analytical cutting force model, Int. J. Mach. Tools Manuf. 40 (2000) 2155–2173 [Google Scholar]
  8. W.Y. Bao, I.N. Tansel, Modeling micro end milling operations. Part II: tool run-out, Int. J. Mach. Tools Manuf. 40 (2000) 2175–2192 [Google Scholar]
  9. H.Z. Li, K. Liu, X.P. Li, A new method for determining the undeformed chip thickness in milling, J. Mater. Process. Technol. 113 (2001) 378–384 [Google Scholar]
  10. X.P. Li, H.Z. Li, Theoretical modelling of cutting forces in helical end milling with cutter runout, Int. J. Mech. Sci. 46 (2004) 1399–1414 [Google Scholar]
  11. Y.H. Kang, C.M. Zheng, Mathematical modelling of chip thickness in micro-end- milling: a Fourier modelling, Appl. Math. Model. 37 (2013) 4208–4223 [Google Scholar]
  12. A. Mamedov, I. Lazoglu, An evaluation of micro milling chip thickness models for the process mechanics, Int. J. Adv. Manuf. Technol. 87 (2016) 1843–1849 [Google Scholar]
  13. X. Jin, Y. Altintas, Prediction of micro-milling forces with finite element method, J. Mater. Process. Technol. 212 (2012) 542–552 [Google Scholar]
  14. Y. Altintas, S.S. Park, Dynamic compensation of spindle-integrated force sensors, Ann. CIRP 53 (2004) 305–308 [Google Scholar]
  15. S.S. Park, M. Malekian, Mechanistic modeling and accurate measurement of micro end milling forces, CIRP Ann. Manuf. Technol. 58 (2009) 49–52 [Google Scholar]
  16. A. Mamedov, I. Lazoglu, Micro ball-end milling of freeform titanium parts, Adv. Manuf. 3 (2015) 263–268 [Google Scholar]
  17. M. Malekian, S.S. Park, M.B.G. Jun, Modeling of dynamic micro-milling cutting forces, Int. J. Mach. Tools Manuf. 49 (2009) 586–598 [Google Scholar]
  18. M.B.G. Jun, X. Liu, R.E. DeVor, S.G. Kapoor, Investigation of the dynamics of microend milling—part I: model development, J. Manuf. Sci. Eng. 128 (2006) 893–900 [Google Scholar]
  19. N. Fang, Slip-line modeling of machining with a rounded-edge tool—part I: new model and theory, J. Mech. Phys. Solids 51 (2003) 715–742 [CrossRef] [Google Scholar]
  20. N. Fang, I.S. Jawahir, An analytical predictive model and experimental validation for machining with grooved tools incorporating the effects of strains, strain-rates, and temperatures, CIRP Ann. Manuf. Technol. 51 (2002) 83–86 [Google Scholar]
  21. X. Jing, H. Li, J. Wang, Y. Tian, Modelling the cutting forces in micro-end-milling using a hybrid approach, Int. J. Adv. Manuf. Technol. 73 (2014) 1647–1656 [Google Scholar]
  22. Y. Altintas, Manufacturing Automation, Cambridge University Press, 2000 [Google Scholar]
  23. X. Jing, R. Lv, Y. Chen, Y. Tian, H. Li, Modelling and experimental analysis of the effects of run out, minimum chip thickness and elastic recovery on the cutting force in micro-end-milling, Int. J. Mech. Sci. 176 (2020). [CrossRef] [Google Scholar]
  24. Y. Zhang, S. Li, K. Zhu, Generic instantaneous force modeling and comprehensive real engagement identification in micro-milling, Int. J. Mech. Sci. 176 (2020). [CrossRef] [Google Scholar]
  25. A. Mamedov, K.S.E. Layegh, I. Lazoglu, Instantaneous tool deflection model, Int. J. Adv. Manuf. Technol. 79 (2015) 769–777 [Google Scholar]
  26. Z. Sun, S. Toa, Sh. Zhanga, G. Zhang, Theoretical and experimental unvestigation into non-uniformity of surface generation in micro-milling, Int. J. Mech. Sci. 140 (2018) 313–324 [Google Scholar]
  27. S.P. Leo Kumar, Experimental investigations and empirical modeling for optimization of surface roughness and machining time parameters in micro end milling using Genetic Algorithm, Measurement 124 (2018) 386–394 [Google Scholar]
  28. K. Aslantas, E. Ekici, A. Cicek, Optimization of process parameters for micro milling of Ti-6Al-4V alloy using Taguchi-based gray relational analysis, Measurement 128 (2018) 419–427 [Google Scholar]
  29. G. Beruvides, F. Castaño, R. Quiza, R. Haber, Surface roughness modeling and optimization of tungsten–copper alloys in micro-milling processes, Measurement 86 (2016) 246–252 [Google Scholar]
  30. K. Vipindas, M. Jose, Wear behavior of TiAlN coated WC tool during micro end milling of Ti-6Al4V and analysis of surface roughness, Wear 424–425 (2019) 165–182 [Google Scholar]
  31. W. Chen, W. Xie, D. Huo, K. Yang, A novel 3D surface generation model for micro milling based on homogeneous matrix transformation and dynamic regenerative effect, Int. J. Mech. Sci. 144 (2018) 146–157 [Google Scholar]
  32. Y. Altintas, D. Montgomery, Mechanism of cutting force and surface generation in dynamic milling, J. Eng. Ind. 113 (1991) 160–168 [Google Scholar]
  33. T. Schmitz, S.K. Smith, Machining Dynamics: Frequency Response to Improved Productivity, Springer Science & Business Media, 2008 [Google Scholar]
  34. W. Chen, L. Zheng, W. Xie, K. Yang, D. Huo, Modelling and experimental investigation on textured surface generation in vibration-assisted micro-milling, J. Mater. Process. Technol. 266 (2019) 339–350 [Google Scholar]
  35. X. Zhang, T. Yu, J. Zao, Surface generation modeling of micro milling process with stochastic tool wear, Precis. Eng. 61 (2020) 170–181 [Google Scholar]
  36. W. Chen, W. Xie, D. Hou, K. Yang, A novel 3D surface generation model for micro milling based on homogeneous matrix transformation and dynamic regenerative effect, Int. J. Mech. Sci. 144 (2018) 146–157 [Google Scholar]
  37. T. Matsumara, T. Ono, Cutting process of glass with inclined ball end mill, J. Mater. Process. Technol. 200 (2008) 356–363 [Google Scholar]
  38. T. Matsumara, T. Ono, Influence of tool inclination on brittle fracture in glass cutting with ball end mills, J. Mater. Process. Technol. 202 (2008) 61–69 [Google Scholar]
  39. X. Liu, R.E. DeVor, S.G. Kapoor, Model-based analysis of the surface generation in microendmilling—part I: model development, J. Manuf. Sci. Eng. 129 (2007) 453–460 [Google Scholar]
  40. K. Groß, M. Eifler, K. Kauer, K. Huttenlochner, B. Kirsch, C. Zeigler, J.C. Aurich, J. Seewig, Determination of the surface topography of ball end micro milled material measures, Eng. Sci. Technol. (2020) [Google Scholar]
  41. R. Komanduri, Z.B. Hou, Thermal modeling of the metal cutting process: part I − temperature rise distribution due to shear plane heat sourse, Int. J. Mech. Sci. 42 (2000) 1715–1752 [Google Scholar]
  42. R. Komanduri, Z.B. Hou, Thermal modeling of the metal cutting process: part II − temperature rise distribution due to frictional heat sourse at the tool-chip interface, Int. J. Mech. Sci. 43 (2001) 57–88 [Google Scholar]
  43. R. Komanduri, Z.B. Hou, Thermal modeling of the metal cutting process: part III- temperature rise distribution due to the combined effects of shear plane heat source and the tool chip interface frictional heat source, Int. J. Mech. Sci. 43 (2001) 89–107 [Google Scholar]
  44. I. Lazoglu, Y. Altintas, Prediction of tool and chip temperature in continuous and interrupted machining, Int. J. Mach. Tools Manuf. 42 (2002) 1011–1022 [Google Scholar]
  45. I. Lazoglu, C. Islam, Modeling of 3D temperature fields for oblique machining, CIRP Ann. Manuf. Technol. 61 (2012) 127–130 [Google Scholar]
  46. S. Lin, F. Peng, J. Wen, Y. Liu, R. Yan, An investigation of workpiece temperature variation in end milling considering flank rubbing effect, Int. J. Mach. Tools Manuf. 73 (2013) 71–86 [Google Scholar]
  47. K. Yang, Y. Liang, K. Zheng, Q. Bai, W. Chen, Tool edge radius effect on cutting temperature in micro-end-milling process, Int. J. Adv. Manuf. Technol. 52 (2010) 905–912 [Google Scholar]
  48. D.L. Wissmiller, F.E. Pfefferkorn, Micro end mill tool temperature measurement and prediction, J. Manuf. Process. 11 (2009) 45–53 [Google Scholar]
  49. A. Mamedov, I. Lazoglu, Thermal analysis of micro milling titanium alloy Ti-6Al-4V, J. Mater. Process. Technol. 229 (2016) 659–667 [Google Scholar]
  50. T. Ozel, T. Thepsonthi, D. Ulutan, B. Kaftanoglu, Experiments and finite element simulations on micro-milling of Ti–6Al–4V alloy with uncoated and CBN coated micro-tools, CIRP Ann. Manuf. Technol. 60 (2011) 85–88 [Google Scholar]
  51. E.E. Yilmaz, E. Budak, H.N. Ozguven, Modeling and measurement of micro end mill dynamics using inverse stability approach, Proc. CIRP 46 (2016) 242–245 [Google Scholar]
  52. S.S. Park, R. Rahnama, Robust chatter stability in micro-milling operations, CIRP Ann. Manuf. Technol. 59 (2010) 391–394 [Google Scholar]
  53. R. Rahnama, M. Sajjadi, S.S. Park, Chatter suppression in micro end milling with process damping, J. Mater. Process. Technol. 209 (2009) 5766–5776 [Google Scholar]
  54. E. Graham, M. Mehrpouya, R. Nagamune, S.S. Park, Robust prediction of chatter stability in micro milling comparing edge theorem and LMI, CIRP J. Manuf. Sci. Technol. 7 (2014) 29–39 [Google Scholar]
  55. K.K. Singh, V.K.R. Singh, Component mode synthesis approach for micro end mill dynamics considering machine tool compliance, Proc. CIRP 58 (2017) 469–474 [Google Scholar]
  56. A. Mokhtari, M.M. Jalili, A. Mazidi, M.M. Abootorabi, Size dependent vibration analysis of micro-milling operations with process damping and structural nonlinearities, Eur. J. Mech. A Solids 76 (2019) 57–69 [Google Scholar]
  57. I.S. Jawahir, E. Brinksmeier, R. M'Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, A.D. Jayal, Surface integrity in material removal processes: recent advances, CIRP Ann. Manuf. Technol. 60 (2011) 603–626 [Google Scholar]
  58. C.O. Ruud, A review of selected non-destructive methods for residual stress measurement, NDT Int. 15 (1982) 15–23 [Google Scholar]
  59. H.K. Tönshoff, T. Friemuth, J.C. Becker, Process monitoring in grinding, Ann. CIRP 51 (2002) 551–571 [Google Scholar]
  60. E. Brinksmeier, State of the art non destructive measurement of subsurface material properties and damages, Prec. Eng. 11 (2002) 211–224 [Google Scholar]
  61. B. Denkena, D. Boehnke, L. León, Machining induced residual stress in structural aluminum parts, Prod. Eng. 2 (2008) 247–253 [Google Scholar]
  62. P. Arrazola, A. Kortabarria, A. Madariaga, J. Esnaola, E. Fernandez, C. Cappellini, D. Ulutan, T. Özel, On the machining induced residual stresses in IN718 nickel-based alloy: experiments and predictions with finite element simulation, Simul. Model. Pract. Theory 41 (2014) 87–103 [Google Scholar]
  63. I. Lazoglu, D. Ulutan, B.E. Alaca, S. Engin, B. Kaftanoglu, An enhanced analytical model for residual stress prediction in machining, CIRP Ann. Manuf. Technol. 57 (2008) 81–94 [Google Scholar]
  64. V. Schulze, P. Arrazola, F. Zanger, J. Osterried, Simulation of distortion due to machining of thin-walled components, Proc. CIRP 8 (2013) 45–50 [Google Scholar]
  65. I. Lazoglu, A. Mamedov, Deformation of thin parts in micro milling, CIRP Ann. Manuf. Technol. 65 (2016) 117–120 [Google Scholar]
  66. Z. Jia, X. Lu, H. Gu, F. Ruan, S.Y. Liang, Deflection prediction of micro-milling Inconel 718 thin-walled parts, J. Mater. Process. Technol. 291 (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.