Open Access
Review
Issue
Manufacturing Rev.
Volume 10, 2023
Article Number 2
Number of page(s) 27
DOI https://doi.org/10.1051/mfreview/2022035
Published online 24 January 2023
  1. L. Gong, J. Zhao, S.B. Huang, Numerical study on layout of micro-channel heat sink for thermal management of electronic devices, Appl. Therm. Eng. 88 (2015) 480–490 [Google Scholar]
  2. J.R. Black, Electromigration − a brief survey and some recent results, IEEE Trans. Electron Dev. Ed. 16 (1969) 338 [Google Scholar]
  3. A. Sommers, Q. Wang, X. Han, T'C. Joen, Y. Park, A. Jacobi, Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems − a review, Appl. Therm. Eng. 30 (2010) 1277–1291 [Google Scholar]
  4. D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, Electr. Device Lett. 2 (1981) 126–129 [Google Scholar]
  5. P. Smakulski, S. Pietrowicz, A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques, Appl. Therm. Eng. 104 (2016) 636–646 [CrossRef] [Google Scholar]
  6. Y.L. Zhai, G.D. Xia, X.F. Liu, Y.F. Li, Exergy analysis and performance evaluation of flow and heat transfer in different micro heat sinks with complex structure, Int. J. Heat Mass Transfer 84 (2015) 293–303 [Google Scholar]
  7. C. Perret, C. Schaeffer, J. Boussey, Microchannel integrated heat sinks in silicon technology, in Industry Applications Conference. Thirty-Third IAS Annual Meeting. The 1998 IEEE (1998) [Google Scholar]
  8. H.Y. Wu, P. Cheng, An experimental study of convective heat transfer in silicon microchannels with different surface conditions, Int. J. Heat Mass Transfer 46 (2003) 2547–2556 [Google Scholar]
  9. Y.P. Chen, C.B. Zhang, M.H. Shi, J.F. Wu, Three-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks, Int. Commun. Heat Mass Transfer 36 (2009) 917–920 [Google Scholar]
  10. P. Gunnasegaran, H.A. Mohammed, N.H. Shuaib, R. Saidur, The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes, Int. Commun. Heat Mass Transfer 37 (2010) 1078–1086 [Google Scholar]
  11. H. Wang, Z. Chen, J. Gao, Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks, Appl. Therm. Eng. 107 (2016) 870–879 [Google Scholar]
  12. R. Vinoth, S.D. Kumar, Channel cross section effect on heat transfer performance of oblique finned microchannel heat sink, Int. Commun. Heat Mass Transfer 87 (2017) 270–276 [Google Scholar]
  13. A. Moradikazerouni, M. Afrand, J. Alsarraf, O. Mahian, S. Wongwises, M.-D. Tran, Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board, Appl. Therm. Eng. 150 (2019) 1078–1089 [Google Scholar]
  14. Y. Alihosseini, M.R. Azaddel, S. Moslemi, M. Mohammadi, A. Pormohammad, M.Z. Targhi, M.M. Heyhat, Effect of liquid cooling on PCR performance with the parametric study of cross-section shapes of microchannels, Sci. Rep. 11 (2021) 16072 [Google Scholar]
  15. X. Hao, B. Peng, G. Xie, Y. Chen, Thermal analysis and experimental validation of laminar heat transfer and pressure drop in serpentine channel heat sinks for electronic cooling, J. Electr. Packag. 136 (2014) 031009 [Google Scholar]
  16. A.F. Al-Neama, N. Kapur, J. Summers, H.M. Thompson, Thermal management of GaN HEMT devices using serpentine minichannel heat sinks, Appl. Therm. Eng. 140 (2018) 622–636 [Google Scholar]
  17. X. Cao, H.L. Liu, X.D. Shao, H. Shen, G.N. Xie, Thermal performance of double serpentine minichannel heat sinks: effects of inlet-outlet arrangements and through-holes, Int. J. Heat Mass Transfer 153 (2020) [Google Scholar]
  18. H.M. Jaffal, B. Freegah, A.A. Hussain, A. Hasan, Effect of the fluid flow fragmentation on the hydrothermal performance enhancement of a serpentine mini-channel heat sink, Case Stud. Thermal Eng. 24 (2021) 100866 [Google Scholar]
  19. A.A. Imran, N.S. Mahmoud, H.M. Jaffal, Numerical and experimental investigation of heat transfer in liquid cooling serpentine mini-channel heat sink with different new configuration models, Therm. Sci. Eng. Progr. 6 (2018) 128–139 [Google Scholar]
  20. M. Gorzin, A.A. Ranjbar, M.J. Hosseini, Experimental and numerical investigation on thermal and hydraulic performance of novel serpentine minichannel heat sink for liquid CPU cooling, Energy Rep. 8 (2022) 3375–3385 [Google Scholar]
  21. Y. Peng, Z.B. Li, S.B. Li, B. Cao, X. Wu, X.F. Zhao, The experimental study of the heat ransfer performance of a zigzag-serpentine microchannel heat sink, Int. J. Thermal Sci. 163 (2021) 106831 [Google Scholar]
  22. Y.P. Chen, P. Cheng, An experimental investigation on the thermal efficiency of fractal tree-like microchannel nets, Int. Commun. Heat Mass Transfer 32 (2005) 931–938 [Google Scholar]
  23. C. Zhang, Y. Chen, R. Wu, M. Shi, Flow boiling in constructal tree-shaped minichannel network, Int. J. Heat Mass Transfer 54 (2011) 202–209 [Google Scholar]
  24. Y.W. Fan, Z.H. Wang, T. Fu, Multi-objective optimization design of lithium-ion battery liquid cooling plate with double-layered dendritic channels, Appl. Therm. Eng. 199 (2021) 117541 [Google Scholar]
  25. Y.W. Fan, Z.H. Wang, T. Fu, H.W. Wu, Numerical investigation on lithium-ion battery thermal management utilizing a novel tree-like channel liquid cooling plate exchanger, Int. J. Heat Mass Transfer 183 (2022) 122143 [Google Scholar]
  26. L.Q. Shui, B. Huang, F. Gao, H.B. Rui, Experimental and numerical investigation on the flow and heat transfer characteristics in a tree-like branching microchannel, J. Mech. Sci. Technol. 32 (2018) 937–946 [Google Scholar]
  27. Y. Ran, Y.F. Su, L. Chen, K. Yan, C.X. Yang, Y. Zhao, Investigation on thermal performance of water-cooled Li-ion cell and module with tree-shaped channel cold plate, J. Energy Storage 50 (2022) 104040 [Google Scholar]
  28. Y. Luo, W. Liu, G. Huang, Fabrication and experimental investigation of the bionic vapor chamber, Appl. Therm. Eng. 168 (2020) 114889 [Google Scholar]
  29. H. Li, X.H. Ding, D.L. Jing, M. Xiong, F.Z. Meng, Experimental and numerical investigation of liquid-cooled heat sinks designed by topology optimization, Int. J. Thermal Sci. 146 (2019) 106065 [Google Scholar]
  30. H. Tan, K. Zong, P. Du, Temperature uniformity in convective leaf vein-shaped fluid microchannels for phased array antenna cooling, Int. J. Thermal Sci. 150 (2020) 106224 [Google Scholar]
  31. Y. Peng, X. Yang, Z.B. Li, S.B. Li, B. Cao, Numerical simulation of cooling performance of heat sink designed based on symmetric and asymmetric leaf veins, Int. J. Heat Mass Transfer 166 (2021) 120721 [Google Scholar]
  32. H. Tan, L. Wu, M. Wang, Z. Yang, P. Du, Heat transfer improvement in microchannel heat sink by topology design and optimization for high heat flux chip cooling, Int. J. Heat Mass Transfer 129 (2019) 681–689 [Google Scholar]
  33. H. Tan, P. Du, K. Zong, G. Meng, X. Gao, Y. Li, Investigation on the temperature distribution in the two-phase spider netted microchannel network heat sink with non-uniform heat flux, Int. J. Thermal Sci. 169 (2021) 107079 [Google Scholar]
  34. X.-h. Han, H.-l. Liu, G. Xie, L. Sang, J. Zhou, Topology optimization for spider web heat sinks for electronic cooling, Appl. Therm. Eng. 195 (2021) 117154 [Google Scholar]
  35. D.H. Hu, Z.W. Zhang, Q. Li, Numerical study on flow and heat transfer characteristics of microchannel designed using topological optimizations method, Sci. China Technol. Sci. 63 (2020) 105–115 [Google Scholar]
  36. Z. Wang, B. Li, Q.-Q. Luo, W. Zhao, Effect of wall roughness by the bionic structure of dragonfly wing on microfluid flow and heat transfer characteristics, Int. J. Heat Mass Transfer 173 (2021) 121201 [Google Scholar]
  37. P. Li, D. Guo, X. Huang, Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink, Int. J. Heat Mass Transfer 146 (2020) 118846 [Google Scholar]
  38. X.W. Wang, Z.P. Wan, Q.H. Lin, Y. Tang, Study on the flow and heat transfer characteristics of sinusoidal half-corrugated microchannels, J. Thermophys. Heat Transfer 34 (2020) 314–321 [Google Scholar]
  39. C. Zhang, Y. Chen, M. Shi, Effects of roughness elements on laminar flow and heat transfer in microchannels, Chem. Eng. Process. 49 (2010) 1188–1192 [Google Scholar]
  40. A. Behnampour, O.A. Akbari, M.R. Safaei, M. Ghavami, A. Marzban, Sheikh G.A. Shabani, M. Zarringhalam, R. Mashayekhi, Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs, Physica E 91 (2017) 15–31 [Google Scholar]
  41. M.M.U. Rehman, T.A. Cheema, F. Ahmad, M. Khan, A. Abbas, Thermodynamic assessment of microchannel heat sinks with novel sidewall ribs, J. Thermophys. Heat Transfer 34 (2020) 243–254 [Google Scholar]
  42. M.M.U. Rehman, T.A. Cheema, M. Khan, A. Abbas, H. Ali, C.W. Park, Parametric evaluation of a hydrofoil-shaped sidewall rib-employed microchannel heat sink with and without nano-encapsulated phase change material slurry as coolant, Appl. Therm. Eng. 178 (2020) 115514 [Google Scholar]
  43. L. Chai, G.D. Xia, H.S. Wang, Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls − Part 1: Heat transfer, Int. J. Heat Mass Transfer 97 (2016) 1069–1080 [Google Scholar]
  44. L. Chai, G.D. Xia, H.S. Wang, Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls − Part 2: Pressure drop, Int. J. Heat Mass Transfer 97 (2016) 1081–1090 [Google Scholar]
  45. L. Chai, G.D. Xia, H.S. Wang, Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls − Part 3: Performance evaluation, Int. J. Heat Mass Transfer 97 (2016) 1091–1101 [Google Scholar]
  46. K. Derakhshanpour, R. Kamali, M. Eslami, Effect of rib shape and fillet radius on thermal-hydrodynamic performance of microchannel heat sinks: a CFD study, Int. Commun. Heat Mass Transfer 119 (2020) 104928 [Google Scholar]
  47. R.C. Adhikari, D.H. Wood, M. Pahlevani, An experimental and numerical study of forced convection heat transfer from rectangular fins at low Reynolds numbers, Int. J. Heat Mass Transfer 163 (2020) 120418 [Google Scholar]
  48. M.B. Ben Hamida, M. Hatami, Optimization of fins arrangements for the square light emitting diode (LED) cooling through nanofluid-filled microchannel, Sci. Rep. UK 11 (2021) 12610 [Google Scholar]
  49. E. Ali, J. Park, H. Park, Numerical investigation of enhanced heat transfer in a rectangular channel with winglets, Heat Transfer Eng. 42 (2020) 695–705 [Google Scholar]
  50. L. Sun, J. Li, H. Xu, J. Ma, H. Peng, Numerical study on heat transfer and flow characteristics of novel microchannel heat sinks, Int. J. Thermal Sci. 176 (2022) 107535 [Google Scholar]
  51. F. Zhang, B. Wu, B. Du, Heat transfer optimization based on finned microchannel heat sink, Int. J. Thermal Sci. 172 (2022) 107357 [Google Scholar]
  52. Y.Y. Wang, J.H. Shin, C. Woodcock, X.F. Yu, Y. Peles, Experimental and numerical study about local heat transfer in a microchannel with a pin fin, Int. J. Heat Mass Transfer 121 (2018) 534–546 [Google Scholar]
  53. M.P. Vasilev, R.S. Abiev, R. Kumar, Effect of circular pin-fins geometry and their arrangement on heat transfer performance for laminar flow in microchannel heat sink, Int. J. Thermal Sci. 170 (2021) 107177 [Google Scholar]
  54. Y.S. Lyu, H.Y. Yu, Y.H. Hu, Q.L. Shu, J. Wang, Bionic design for the heat sink inspired by phyllotactic pattern, Proc. Inst. Mech. Eng. C 235 (2021) 3087–3094 [Google Scholar]
  55. Y. Yan, D. Wang, F. Xu, Z. He, Z. Yang, Numerical study on hot spots thermal management in low pressure gradient distribution narrow microchannel embedded with pin fins, Int. J. Heat Mass Transfer 186 (2022) 122518 [Google Scholar]
  56. Y.H. Pan, R. Zhao, Y.L. Nian, W.L. Cheng, Study on the flow and heat transfer characteristics of pin-fin manifold microchannel heat sink, Int. J. Heat Mass Transfer 183 (2022) 122052 [Google Scholar]
  57. D. Sreehari, Y.K. Prajapati, Comparative analysis of heat transfer and fluid flow in circular and rhombus pin fin heat sink using nanofluid, J. Thermal Sci. Eng. Appl. 13 (2021) 051028 [Google Scholar]
  58. Y. Jia, G. Xia, Y. Li, D. Ma, B. Cai, Heat transfer and fluid flow characteristics of combined microchannel with cone-shaped micro pin fins, Int. Commun. Heat Mass Transfer 92 (2018) 78–89 [Google Scholar]
  59. R. Zheng, Y.J. Wu, Y.H. Li, G.L. Wang, G.F. Ding, Y.N. Sun, Development of a hierarchical microchannel heat sink with flow field reconstruction and low thermal resistance for high heat flux dissipation, Int. J. Heat Mass Transfer 182 (2022) 121925 [Google Scholar]
  60. G. Wang, N. Qian, G. Ding, Heat transfer enhancement in microchannel heat sink with bidirectional rib, Int. J. Heat Mass Transfer 136 (2019) 597–609 [Google Scholar]
  61. L. Chen, D.X. Deng, Q.X. Ma, Y.X. Yao, X.H. Xu, Performance evaluation of high concentration photovoltaic cells cooled by microchannels heat sink with serpentine reentrant microchannels, Appl. Energy 309 (2022) 118478 [Google Scholar]
  62. L. Chai, G. Xia, M. Zhou, J. Li, Numerical simulation of fluid flow and heat transfer in a microchannel heat sink with offset fan-shaped reentrant cavities in sidewall, Int. Commun. Heat Mass Transfer 38 (2011) 577–584 [Google Scholar]
  63. G. Xia, L. Chai, H. Wang, M. Zhou, Z. Cui, Optimum thermal design of microchannel heat sink with triangular reentrant cavities, Appl. Therm. Eng. 31 (2011) 1208–1219 [Google Scholar]
  64. F. Li, W. Zhu, H. He, Field synergy analysis on flow and heat transfer characteristics of nanofluid in microchannel with non-uniform cavities configuration, Int. J. Heat Mass Transfer 144 (2019) 118617 [Google Scholar]
  65. K. Kumar, P. Kumar, Effect of groove depth on hydrothermal characteristics of the rectangular microchannel heat sink, Int. J. Thermal Sci. 161 (2021) 106730 [Google Scholar]
  66. G.D. Xia, J. Jiang, J. Wang, Y.L. Zhai, D.D. Ma, Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks, Int. J. Heat Mass Transfer 80 (2015) 439–447 [Google Scholar]
  67. Q.F. Zhu, H.X. Xia, J.J. Chen, X.M. Zhang, K.P. Chang, H.W. Zhang, H. Wang, J.F. Wan, Y.Y. Jin, Fluid flow and heat transfer characteristics of microchannel heat sinks with different groove shapes, Int. J. Thermal Sci. 161 (2021) 106721 [Google Scholar]
  68. M.Q. Pan, H.Q. Wang, Y.J. Zhong, T.Y. Fang, X.E. Zhong, Numerical simulation of the fluid flow and heat transfer characteristics of microchannel heat exchangers with different reentrant cavities, Int. J. Numer. Methods Heat Fluid Flow 29 (2019) 4334–4348 [Google Scholar]
  69. M.Q. Pan, H.Q. Wang, Y.J. Zhong, M.L. Hu, X.Y. Zhou, G.P. Dong, P.N. Huang, Experimental investigation of the heat transfer performance of microchannel heat exchangers with fan-shaped cavities, Int. J. Heat Mass Transfer 134 (2019) 1199–1208 [Google Scholar]
  70. C. Bi, G.H. Tang, W.Q. Tao, Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves, Appl. Therm. Eng. 55 (2013) 121–132 [Google Scholar]
  71. H. Zontul, H. Hamzah, N. Kurtulmuş, B. Şahin, Investigation of convective heat transfer and flow hydrodynamics in rectangular grooved channels, Int. Commun. Heat Mass Transfer 126 (2021) 105366 [Google Scholar]
  72. X. Liu, H. Zhang, C. Zhu, F. Wang, Z. Li, Effects of structural parameters on fluid flow and heat transfer in a serpentine microchannel with fan-shaped reentrant cavities, Appl. Therm. Eng. 151 (2019) 406–416 [Google Scholar]
  73. L.Q. Shui, J.H. Sun, F. Gao, C.Y. Zhang, Flow and heat transfer in the tree-like branching microchannel with/without dimples, Entropy-Switz 20 (2018) 379 [Google Scholar]
  74. P.N. Huang, G.P. Dong, X.N. Zhong, M.Q. Pan, Numerical investigation of the fluid flow and heat transfer characteristics of tree-shaped microchannel heat sink with variable cross-section, Chem. Eng. Process 147 (2020) 107769 [Google Scholar]
  75. P. Yao, Y. Zhai, Z. Li, X. Shen, H. Wang, Thermal performance analysis of multi-objective optimized microchannels with triangular cavity and rib based on field synergy principle, Case Stud. Thermal Eng. 25 (2021) 100963 [Google Scholar]
  76. Y. Li, Z. Wang, J. Yang, H. Liu, Thermal and hydraulic characteristics of microchannel heat sinks with cavities and fins based on field synergy and thermodynamic analysis, Appl. Therm. Eng. 175 (2020) 115348. [Google Scholar]
  77. Z. Feng, Z. Hu, Y. Lan, Z. Huang, J. Zhang, Effects of geometric parameters of circular pin-fins on fluid flow and heat transfer in an interrupted microchannel heat sink, Int. J. Thermal Sci. 165 (2021) 106956 [Google Scholar]
  78. D.X. Deng, L. Chen, W. Wan, T. Fu, X. Huang, Flow boiling performance in pin fin- interconnected reentrant microchannels heat sink in different operational conditions, Appl. Therm. Eng. 150 (2019) 1260–1272 [Google Scholar]
  79. A. Walunj, A. Sathyabhama, Comparative study of pool boiling heat transfer from various microchannel geometries, Appl. Therm. Eng. 128 (2018) 672–683 [Google Scholar]
  80. H.W. Li, J. Ren, D.D. Yin, G.L. Lu, C.H. Du, X. Jin, Y.T. Jia, Effects of inclination angle and heat power on heat transfer behavior of flat heat pipe with bionic grading microchannels, Appl. Therm. Eng. 206 (2022) 118079 [Google Scholar]
  81. D. Deng, W. Wan, Y. Qin, J. Zhang, X. Chu, Flow boiling enhancement of structured microchannels with micro pin fins, Int. J. Heat Mass Transfer 105 (2017) 338–349 [Google Scholar]
  82. Y. Zhu, D.S. Antao, K.-H. Chu, S. Chen, T.J. Hendricks, T. Zhang, E.N. Wang, Surface structure enhanced microchannel flow boiling, J. Heat Transfer 138 (2016) 091501 [Google Scholar]
  83. W. Wan, D. Deng, Q. Huang, T. Zeng, Y. Huang, Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks, Appl. Therm. Eng. 114 (2017) 436–449 [Google Scholar]
  84. D. Deng, J. Feng, Q. Huang, Y. Tang, Y. Lian, Pool boiling heat transfer of porous structures with reentrant cavities, Int. J. Heat Mass Transfer 99 (2016) 556–568 [Google Scholar]
  85. Y. Sun, G. Chen, S. Zhang, Y. Tang, J. Zeng, W. Yuan, Pool boiling performance and bubble dynamics on microgrooved surfaces with reentrant cavities, Appl. Therm. Eng. 125 (2017) 432–442 [Google Scholar]
  86. J. Zeng, S. Zhang, Y. Tang, Y. Sun, W. Yuan, Flow boiling characteristics of micro-grooved channels with reentrant cavity array at different operational conditions, Int. J. Heat Mass Transfer 114 (2017) 1001–1012 [Google Scholar]
  87. G. Chen, M. Jia, S. Zhang, Y. Tang, Z. Wan, Pool boiling enhancement of novel interconnected microchannels with reentrant cavities for high-power electronics cooling, Int. J. Heat Mass Transfer 156 (2020) 119836 [Google Scholar]
  88. R. Liu, G. Luo, Y. Li, J. Zhang, Q. Shen, L. Zhang, Microstructure and thermal properties of diamond/copper composites with Mo2C in-situ nano-coating, Surf. Coat. Technol. 360 (2019) 376–381 [Google Scholar]
  89. Q.L. Che, J.J. Zhang, X.K. Chen, Y.Q. Ji, Y.W. Li, L.X. Wang, S.Z. Cao, L. Guo, Z. Wang, S.W. Wang, Z.K. Zhang, Y.G. Jiang, Spark plasma sintering of titanium-coated diamond and copper-titanium powder to enhance thermal conductivity of diamond/copper composites, Mater. Sci. Semiconductor Process. 33 (2015) 67–75 [Google Scholar]
  90. D. Zhao, S. Zha, D. Liu, Influence of sputtering and electroless plating of Cr/Cu dual-layer structure on thermal conductivity of diamond/copper composites, Diamond Relat. Mater. 115 (2021) 108296 [Google Scholar]
  91. G.Z. Bai, Y.J. Zhang, X.Y. Liu, J.J. Dai, X.T. Wang, H.L. Zhang, High-temperature thermal conductivity and thermal cycling behavior of Cu-B/diamond composites, IEEE Trans. Comp. Pack Manag. 10 (2020) 626–636 [Google Scholar]
  92. Y. Wu, Z. Tang, Y. Wang, P. Cheng, H. Wang, G. Ding, High thermal conductive Cu-diamond composites synthesized by electrodeposition and the critical effects of additives on void-free composites, Ceram. Int. 45 (2019) 19658–19668 [Google Scholar]
  93. C.Q. Li, J. Huang, Y.L. Shang, H.Y. Huang, Study on the flow and heat dissipation of water-based alumina nanofluids in microchannels, Case Stud. Thermal Eng. 22 (2020) 100746 [Google Scholar]
  94. J. Wang, K. Yu, M.Z. Ye, E. Wang, W. Wang, B. Sunden, Effects of pin fins and vortex generators on thermal performance in a microchannel with Al2O3 nanofluids, Energy 239 (2022) 122606 [Google Scholar]
  95. A.M. Ali, M. Angelino, A. Rona, Numerical analysis on the thermal performance of microchannel heat sinks with Al2O3 nanofluid and various fins, Appl. Therm. Eng. 198 (2021) 117458 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.